首页> 中文期刊> 《材料科学技术:英文版》 >Internal magnetic-field-enhanced photogenerated charge separation in ferromagnetic TiO_(2)surface heterojunctions

Internal magnetic-field-enhanced photogenerated charge separation in ferromagnetic TiO_(2)surface heterojunctions

         

摘要

The use of the internal magnetic field of ferromagnets can effectively promote charge separation and transfer(CST)in photoelectrochemical energy conversion.However,photoelectrochemical materials with a ferromagnetic field are scarce,and the internal magnetic field is negligible in nonferromagnetic mate-rials.To address this issue,we propose a rational method for preparing ferromagnetic TiO_(2)powder using controllable oxygen vacancies in anatase TiO_(2)with co-exposed{001}and{101}facets.Accordingly,an ex-cellent saturation magnetisation of 0.0014 emu/g in TiO_(2)is achieved owing to an asymmetric and uneven charge distribution.Compared with that of nonferromagnetic TiO_(2),the efficiency of photocatalytic hydro-gen generation of ferromagnetic TiO_(2)is improved by 0.64 times.The enhancement of photocatalytic hy-drogen generation is due to the different forces exerted on the electrons and holes in the magnetic field,which significantly improve the photogenerated CST efficiency of ferromagnetic TiO_(2).This result high-lights the significant role of the synergistic regulation of the crystal structure and defects in regulating the ferromagnetic characteristics of materials.The findings of this study provide guidance for leveraging point defects to promote CST for high-efficiency solar-energy conversion systems.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号