首页> 中文期刊> 《材料科学技术:英文版》 >Microstructure evolution and stress rupture properties of K4750 alloys with various B contents during long-term aging

Microstructure evolution and stress rupture properties of K4750 alloys with various B contents during long-term aging

         

摘要

The relationship among B content,microstructure evolution and stress rupture properties of K4750 alloy during long-term aging were investigated.After aging at 800℃for 1000 h,the decomposition degree of MC carbides of K4750 alloys with 0 B,0.007 wt.%B and 0.010 wt.%B were basically identical,which indicated that B has no inhibition on MC carbide decomposition during long-term aging.The MC carbide decomposition was accompanied by the formation of M_(23)C_(6) carbides and a small number ofηphases,which was controlled by the outward diffusion of C and Ti combined with the inward diffusion of Ni and Cr from theγmatrix.In addition,M_(23)C_(6) carbides in boron-free alloy were in continuous chain and needle-likeηphases were precipitated near them,while M_(23)C_(6) carbides in boron-containing alloys remained in granular distribution and noηphases precipitation around them.Adding B could delay the agglomeration and coarsening of M_(23)C_(6) carbides during long-term aging,which was because the segregation of B at grain boundary retarded the diffusion of alloy elements,thus weakened the local fluctuation of chemical composition near grain boundary.The stress rupture samples of K4750 alloys with various B contents after aging at 800℃for 1000 h were tested at 750℃/380 MPa.The results indicated that the stress rupture properties of bo ron-containing alloys were significantly better than that of boron-free alloy,which could be attributed to the increase of grain boundary cohesion strength and the optimization of M_(23)C_(6) carbide distribution due to the addition of B.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号