首页> 中文期刊> 《材料科学技术:英文版》 >Improved corrosion resistance of Mg alloy AZ31B induced by selective evaporation of Mg using large pulsed electron beam irradiation

Improved corrosion resistance of Mg alloy AZ31B induced by selective evaporation of Mg using large pulsed electron beam irradiation

         

摘要

Large pulsed electron beam(LPEB) irradiation was employed as a surface treatment of magnesium(Mg)alloy AZ31B to enhance its corrosion and wear resistance. Selective evaporation of Mg induced by LPEB irradiation at an energy density of 5J/cm^2 for 40 cycles has led to the formation of an Al-enriched resolidified layer with nano-grained structure consisting of Mg3.1 Al0.9 metastable phase. The formation of such a re-solidified layer after LPEB irradiation has enabled a decrease in corrosion rate of Mg alloy AZ31B in 3.5% NaCl solution. Different equivalent electrical circuit models were proposed to account for the corrosion behavior of untreated Mg alloy AZ31B and those subjected to LPEB irradiation. A decrease in wear depth when compared to that of the untreated alloy suggests an increase in wear resistance of LPEB-irradiated Mg alloy AZ31B. Adhesive wear is the predominant mechanism of untreated Mg alloy AZ31B while abrasive wear mechanism dominates for LPEB-irradiated Mg alloy AZ31B.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号