首页> 中文期刊> 《材料科学技术:英文版》 >Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy

Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy

         

摘要

Corrosion resistance of titanium(Ti)alloys is closely connected with their microstructure which can be adjusted and controlled via different annealing schemes.Herein,we systematically investigate the specific effects of annealing on the corrosion performance of Ti-6 Al-3 Nb-2 Zr-1 Mo(Ti80)alloy in 3.5 wt.%NaCl and 5 M HCl solutions,respectively,based on open circuit potential(OCP),potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),static immersion tests and surface analysis.Results indicate that increasing annealing tempe rature endows Ti80 alloy with a higher volume fraction ofβphase and finerαphase,which in turn improves its corrosion resistance.Surface characterization demonstrates thatβphase is more resistant to corrosion thanαphase owing to a higher content of Nb,Mo,and Zr in the former;additionally,the decreased thickness of a phase alleviates segregation of elements to further restrain the micro-galvanic couple effects betweenαandβphases.Meanwhile,the influential mechanisms of environmental conditions on corrosion of Ti80 alloy are discussed in detail.As the formation of a highly compact and stable oxide film on surface,annealed Ti80 alloys exhibit a low corrosion current density(10^(-6)A/cm^(2))and high polarization impedance(10^(6)Ω·cm^(2))in 3.5 wt.%NaCl solution.However,they suffer severe corrosion in 5 M HCl solution,resulting from the breakdown of native oxide films(the conversion of TiO_(2)to aqueous Ti^(3+)),active dissolution of substrate Ti to aqueous Ti^(3+)and existence of micro-galvanic couple effects.Those findings could provide new insights to designing Ti alloys with high-corrosion resistance through microstructural optimization.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号