首页> 中文期刊> 《材料科学技术:英文版》 >Effect of lamellar structural parameters on the bending fracture behavior of AA1100/AA7075 laminated metal composites

Effect of lamellar structural parameters on the bending fracture behavior of AA1100/AA7075 laminated metal composites

         

摘要

The lamellar structure has an important impact on the mechanical properties of dissimilar laminated metal composites(LMCs),including the thickness ratio of dissimilar metal constituent layers and the number of layers.AA1100 and AA7075 with thickness ratios of 1:4 and 3:4 were fabricated for multilayer AA1100/AA7075 LMCs by hot accumulative roll bonding(ARB)technology.The bending fracture characteristics of AA1100/AA7075 LMCs with different thickness ratios and numbers of constituent layers were investigated.The research results indicated that AA1100/AA7075 LMCs with a low thickness ratio exhibited better bending ductility and toughness than those with a high thickness ratio,which was attributed to the crack growth resistance caused by the thickness of the soft AA1100 layer.The toughening mechanism introduced by crack deflection or arresting contributed to the enhancement in the toughness of the LMCs compared with that of the single 7075 Al layer.The bonding interfaces of AA1100/AA7075 LMCs with different numbers of layers are continuous and straight due to the high ARB temperature.A decrease in bending toughness was observed as the number of layers increased.Unlike LMCs with a low number of layers,crack deflection or interface delamination is also considered a main toughening mechanism in dissimilar LMCs in addition to the thickness effect.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号