首页> 中文期刊> 《材料科学技术:英文版》 >Multistage strain-hardening behavior of ultrastrong and ductile lightweight refractory complex-concentrated alloys

Multistage strain-hardening behavior of ultrastrong and ductile lightweight refractory complex-concentrated alloys

         

摘要

Lightweight high-entropy alloys or complex-concentrated alloys have demonstrated great potential for engineering applications due to their high strength and lightweight.However,a weak strain-hardening ability and a limited tensile ductility remain their major hindrance.Here,a multistage strain-hardening effect is developed to ensure a high strength and still a sufficient ductility in a rolled and annealed(Ti_(44)V_(28)Zr_(14)Nb_(14))_(98.5)Mo_(1.5)(at.%)lightweight refractory complex-concentrated alloy(M1.5A-LRCCA).This multistage strain-hardening behavior is related to the microstructure and the corresponding initial aver-age dislocation density and distribution by comparison with rolled and annealed Ti_(44)V_(28)Zr_(14)Nb_(14)(M0-LRCCA)and as-cast(Ti_(44)V_(28)Zr_(14)Nb_(14))_(98.5)Mo_(1.5)(M1.5C-LRCCA).The microstructure,with homogeneously distributed submicron precipitations,a moderate initial average dislocation density,and uniform disloca-tion distribution(e.g.,M1.5A-LRCCA),is susceptible to producing various deformation substructures,such as dislocation substructures(slip bands,Taylor lattices,microbands,DDWs),shear bands,and deformation twins,which results in the multistage strain-hardening behavior.This method of achieving multistage strain hardening behavior through a microstructure modulation is significant for engineering applications of lightweight high-entropy alloys or complex-concentrated alloys,and it might be extended to other lightweight and high-strength alloys.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号