首页> 中文期刊> 《材料科学技术:英文版》 >Dislocation me diate d dynamic tension-compression asymmetry of a Ni_(2)CoFeV_(0.5)Mo_(0.2) medium entropy alloy

Dislocation me diate d dynamic tension-compression asymmetry of a Ni_(2)CoFeV_(0.5)Mo_(0.2) medium entropy alloy

         

摘要

Although tension-compression(T-C)asymmetry in yield strength was rarely documented in coarse-grained face centered cubic(FCC)metals as critical resolved shear stress(CRSS)for dislocation slip differs little between tension and compression,the T-C asymmetry in strength,i.e.,higher strength when loaded in compression than in tension,was reported in some FCC high entropy alloys(HEAs)due to twinning and phase transitions activated at high strain regimes in compression.In this paper,we demonstrate a reversed and atypical tension-compression asymmetry(tensile strength markedly exceeds compressive strength)in a non-equiatomic FCC Ni_(2)CoFeV_(0.5)Mo_(0.2) medium entropy alloy(MEA)under dynamic loading,wherein dislocation slip governs dynamic deformation without twins or phase transitions.The asymme-try can be primarily interpreted as higher CRSS and more hard slip modes(lower average Schmid factor)activated in grains under dynamic tension than compression.Besides,larger strain rate sensitivity in dy-namic tension overwhelmingly contributes to the higher flow stress,thanks to the occurrence of more immobile Lomer-locks,narrower spacing of planar slip bands and higher dislocation density.This finding may provide some insights into designing MEAs/HEAs with desired properties under extreme conditions such as blast,impact and crash.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号