首页> 中文期刊> 《镁合金学报(英文)》 >Hydrogen-induced optical properties of FC/Pd/Mg films:Roles of grain size and grain boundary

Hydrogen-induced optical properties of FC/Pd/Mg films:Roles of grain size and grain boundary

         

摘要

Nanomodification is an effective method to solve the thermodynamic and kinetics limitation of Magnesium(Mg)-based materials,which shows promising application prospects in hydrogen energy field.However,the role of the grain size of pure Mg on the hydrogen-induced performance of the hydrogen sensitive thin film under cyclic hydrogen loading/unloading process at room temperature has rarely been studied systematically.To study the relationship between the structure of Mg layer and the hydrogen-induced optical performance of fluorocarbon(FC)/Pd/Mg films,a series of Mg with different internal structures were prepared by changing the velocity of sputtered atoms under different sputtering powers.The FC/Pd/Mg(40 W)film with fine nanostructure showed faster hydrogenation/dehydrogenation kinetics as well as a larger optical conversion range,which can be attributed to the large population of grain boundaries with high grain boundary energy and more hydrogen diffusion path.As sputtering power gradually increased from 40 W to 300 W,the grain inside films grew larger.The FC/Pd/Mg(300 W)film had more columnar-like regions inside and less grain boundaries with lower energy contributing to slower hydrogen absorption/desorption kinetics and lower optical conversion range.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号