首页> 中文期刊> 《中国科学》 >Toward molecular models of proton pumping:Challenges,methods and relevant applications

Toward molecular models of proton pumping:Challenges,methods and relevant applications

         

摘要

Motivated by several long-lasting mechanistic questions for biomolecular proton pumps,we have engaged in developing hybrid quantum mechanical/molecular mechanical(QM/MM) methods that allow an efficient and reliable description of long-range proton transport in transmembrane proteins.In this review,we briefly discuss several relevant issues:the need to develop a "multi-scale" generalized solvent boundary potential(GSBP) for the analysis of chemical events in large trans-membrane proteins,approaches to validate such a protocol,and the importance of improving the flexibility of QM/MM Hamiltonian.Several recent studies of model and realistic protein systems are also discussed to help put the discussions into context.Collectively,these studies suggest that the QM/MM-GSBP framework based on an approximate density functional theory(SCC-DFTB) as QM holds the promise to strike the proper balance between computational efficiency,accuracy and generality.With additional improvements in the methodology and recent developments by others,especially powerful sampling techniques,this "multi-scale" framework will be able to help unlock the secrets of proton pumps and other biomolecular machines.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号