首页> 中文期刊> 《中国物理:英文版》 >Efficiency droop suppression in GaN-based light-emitting diodes by chirped multiple quantum well structure at high current injection

Efficiency droop suppression in GaN-based light-emitting diodes by chirped multiple quantum well structure at high current injection

         

摘要

Gallium nitride(Ga N) based light-emitting diodes(LEDs) with chirped multiple quantum well(MQW) structures have been investigated experimentally and numerically in this paper. Compared to conventional LEDs with uniform quantum wells(QWs), LEDs with chirped MQW structures have better internal quantum efficiency(IQE) and carrier injection efficiency. The droop ratios of LEDs with chirped MQW structures show a remarkable improvement at 600 m A/mm2,reduced down from 28.6%(conventional uniform LEDs) to 23.7%(chirped MQWs-a) and 18.6%(chirped MQWs-b),respectively. Meanwhile, the peak IQE increases from 76.9%(uniform LEDs) to 83.7%(chirped MQWs-a) and 88.6%(chirped MQWs-b). The reservoir effect of chirped MQW structures is the significant reason as it could increase hole injection efficiency and radiative recombination. The leakage current and Auger recombination of chirped MQW structures can also be suppressed. Furthermore, the chirped MQWs-b structure with lower potential barriers can enhance the reservoir effect and obtain further improvement of the carrier injection efficiency and radiative recombination, as well as further suppressing efficiency droop.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号