首页> 中文期刊> 《中国天然药物:英文版》 >Label-free quantitative proteomics reveals fibrinopeptide B and heparin cofactorⅡas potential serum biomarkers in respiratory syncytial virus-infected mice treated with Qingfei oral liquid formula

Label-free quantitative proteomics reveals fibrinopeptide B and heparin cofactorⅡas potential serum biomarkers in respiratory syncytial virus-infected mice treated with Qingfei oral liquid formula

         

摘要

Respiratory syncytial virus(RSV) is a leading cause of acute lower respiratory tract infections. Qingfei oral liquid(QFOL), a traditional Chinese medicine, is widely used in clinical treatment for RSV-induced pneumonia. The present study was designed to reveal the potential targets and mechanism of action for QFOL by exploring its influence on the host cellular network following RSV infection. We investigated the serum proteomic changes and potential biomarkers in an RSV-infected mouse pneumonia model treated with QFOL. Eighteen BALB/c mice were randomly divided into three groups: RSV pneumonia model group(M), QFOL-treated group(Q) and the control group(C). Serum proteomes were analyzed and compared using a label-free quantitative LC-MS/MS approach. A total of 172 protein groups, 1009 proteins, and 1073 unique peptides were successfully identified. 51 differentially expressed proteins(DEPs) were identified(15 DEPs when M/C and 43 DEPs when Q/M; 7 DEPs in common). Classification and interaction network showed that these proteins participated in various biological processes including immune response, blood coagulation, complement activation, and so forth. Particularly, fibrinopeptide B(FpB) and heparin cofactor Ⅱ(HCII) were evaluated as important nodes in the interaction network, which was closely involved in coagulation and inflammation. Further, the Fp B level was increased in Group M but decreased in Group Q, while the HCII level exhibited the opposite trend. These findings not only indicated FpB and HCII as potential biomarkers and targets of QFOL in the treatment of RSV pneumonia, but also suggested a regulatory role of QFOL in the RSV-induced disturbance of coagulation and inflammation-coagulation interactions.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号