首页> 中文期刊> 《中国药理学与毒理学杂志》 >Metabolic heterogeneity of gastric cancer cell lines

Metabolic heterogeneity of gastric cancer cell lines

         

摘要

OBJECTIVE Gastric cancer is one of the most common malignant tumors,and the inci-dence rate is the highest in all kinds of tumors in China. However,it remains unclear that how signifi-cantly gastric cells are dependent on glycolysis,and which type of gastric cells are sensitive to glycolysis inhibition. In this study, several kind of gastric cancer cell lines were used as the research object, and the metabolic characteristics of different cell lines were systematically analyzed to provide theoretical support for the accurate treatment of gastric cancer. METHODS We examined the energy metabolism of four gastric cancer cell lines(MGC-803,SGC-7901,HGC-27 and BGC-823)by using glycolysis inhibitor, 2-deoxy-D-glucose(2-DG)and inhibitor of oxidative phosphorylation,oligomycin.Oxygen consumption rates(OCR)and L-lactate were also measured with an XF96 Analyzer(Seahorse Biosciences)to deter-mine the significance of metabolism of oxidative phosphorylation and aerobic glycolysisin gastric cells. In addition, western blot was used to detect the contribution of AMP-activated protein kinase (AMPK), and anti-apoptotic proteins(Bcl-2 and survivin)to clarify the mechanism of death or survival of gastric cancer cells treated by 2-DG or oligomycin. RESULTS In this study, it was shown that the growth of gastric cell lines were suppressed by 2-DG.However,the sensitivity to 2-DG was quite different among cell lines:IC 50 of 2-DG was from 3.28 mmol·L-1(MGC-803)to 15.57 mmol·L-1(BGC-823).MGC-803 was relatively sensitive to 2-DG (IC 50:3.28 mmol·L-1), consumed more glucose and produced more lactate (waste product of glycolysis) than the three other cell lines. Consequently, MGC-803 could be more dependent on glycolysis than other cell lines, which was further confirmed by the fact that glucose (+)FCS(-)medium showed more growth and survival than glucose(-)FCS(+)medium.Alternatively, BGC-823, most resistant to 2-DG (IC50: 15.57 mmol·L- 1), was most sensitive to oligomycin, and showed more growth and survival in glucose(-)FCS(+)medium than in glucose(+)FCS(-)medium. Thus,we had reasons to think BGC-823 cells depended on oxidative phosphorylation for energy production. In BGC-823,AMPK,which is activated when ATP becomes limiting,was rapidly phosphorylated by 2-DG, and expression of Bcl-2 was augmented,which might result in resistance to 2-DG.Interestingly,AMPK phosphorylation and augmentation of Bcl-2 expression by 2-DG were not observed in MGC-803,which is 2-DG sensitive. CONCLUSION There is a large metabolic difference between gastric cancer cell lines,which will facilitate the future gastric cancer therapy by targeting metabolic pathways.

著录项

  • 来源
    《中国药理学与毒理学杂志》 |2018年第4期|278-279|共2页
  • 作者单位

    Clinical Pharmacology Laboratory;

    Pharmacy Department;

    Zhengzhou University People′s Hospital;

    Zhengzhou 450003;

    China;

    Clinical Pharmacology Laboratory;

    Pharmacy Department;

    Zhengzhou University People′s Hospital;

    Zhengzhou 450003;

    China;

    Clinical Pharmacology Laboratory;

    Pharmacy Department;

    Fuwai Centeral China Cardiovascular Hospital;

    Zhengzhou 451464;

    China;

    Clinical Pharmacology Laboratory;

    Pharmacy Department;

    Fuwai Centeral China Cardiovascular Hospital;

    Zhengzhou 451464;

    China;

    Clinical Pharmacology Laboratory;

    Pharmacy Department;

    Fuwai Centeral China Cardiovascular Hospital;

    Zhengzhou 451464;

    China;

    Clinical Pharmacology Laboratory;

    Pharmacy Department;

    Fuwai Centeral China Cardiovascular Hospital;

    Zhengzhou 451464;

    China;

    Clinical Pharmacology Laboratory;

    Pharmacy Department;

    Zhengzhou University People′s Hospital;

    Zhengzhou 450003;

    China;

    Clinical Pharmacology Laboratory;

    Pharmacy Department;

    Fuwai Centeral China Cardiovascular Hospital;

    Zhengzhou 451464;

    China;

    Clinical Pharmacology Laboratory;

    Pharmacy Department;

    Zhengzhou University People′s Hospital;

    Zhengzhou 450003;

    China;

    Clinical Pharmacology Laboratory;

    Pharmacy Department;

    Fuwai Centeral China Cardiovascular Hospital;

    Zhengzhou 451464;

    China;

  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号