首页> 中文期刊> 《中国机械工程学报:英文版 》 >Metadynamic Recrystallization of the As-cast 42CrMo Steel after Normalizing and Tempering during Hot Compression

Metadynamic Recrystallization of the As-cast 42CrMo Steel after Normalizing and Tempering during Hot Compression

             

摘要

The existing researches of hot ring rolling process are mainly based on forged billet. Compared with the existing process, the new ring casting-rolling compound forming process has significant advantages in saving materials and energy, reducing emission and reducing the production cost. The microstructure evolution of the casting materials during hot deformation is the basis of the research of the new process. However, the researches on the casting materials are rare. The metadynamic recrystallization of the as-cast 42CrMo steel after normalizing and tempering during the hot compression is investigated. The tests are performed on the Gleeble-1500 thermal-mechanical simulator. The influence rule of the deformation parameters on the metadynamic recrystallization is obtained by analyzing the experimental data. The kinetic model of the metadynamic recrystallization is deduced. The analysis results show that the metadynamic recrystallization fraction increases with the increase of the deformation temperature and the strain rate. The metallographic experiments are used to investigate the influence rule of the deformation parameters on the grain size of the metadynamic recrystallization. The experimental results show that the grain of the metadynamic recrystallization could be refined with the increase of the strain rate and the decrease of the deformation temperature during hot compression. The occurrence of the metadynamic recrystallization during the hot deformation is more difficult in as-cast 42CrMo steel than in forged 42CrMo steel. The research can provide the foundation for the further research of the hot deformation behaviors of the as-cast structure and theoretical support for the new ring casting-rolling compound process.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号