首页> 中文期刊> 《中国机械工程学报:英文版》 >Experimental Investigation on Noise of Cavitation Nozzle and Its Chaotic Behaviour

Experimental Investigation on Noise of Cavitation Nozzle and Its Chaotic Behaviour

         

摘要

The researches of cavitation noise mainly focus on the incipiency and developing of cavitation to prevent the cavititation erosion in the hydraulic machinery, while there is few report about the collapse strength of cavitation bubbles produced by water jet through the cavitation nozzle to utilize efficiently the collapse energy of cavitation bubbles. The cavitation noise signals are collected with hydrophones for the cavitation nozzle and general nozzle at the target position and the nozzle exit separately in the conditions of different standoff distance. The features of signal's frequency spectrum and power spectrum are analyzed for various nozzles by way of classical methods. Meanwhile, based on chaotic theory, phase space reconstruction is processed and the maximum Lyapunov index is calculated separately for each cavitation signal's time series. The results of chaotic analysis are compared with the one of conventional analysis. The analyzed data show that there are the marked differences at the spectrum between the cavitation nozzle and general nozzle at the target position while the standoff distance is 35 mm, which mainly displays at the high frequency segment (60-120 kHz). The maximum Lyapunov index calculated appear at standoff distance 35 mm, which is an optimum standoff distance for the most bubbles to collapse at the target. At the nozzle exit, the noise signal of cavitation nozzle is different from the general nozzle, which also displays at the high frequency segment. The results demonstrate that the water jet modulated by the cavitation nozzle can produce effectually cavitation, and at the target position the amplitude and energy of noise spectrum in high frequency segment for cavitation nozzle are higher than conventional nozzle and the Lyapunov index of cavitation nozzle is larger than conventional nozzle as the standoff distance is less than 55 mm. The proposed research reveals that the cavitation noise produced by collapse of cavitation bubbles attributes mainly to the high frequency segment of the spectrum, which provides references for the research on cavitation noise.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号