首页> 中文期刊> 《中国化学工程学报(英文版)》 >硬木中流体移动的双尺度多孔机理的依据(Ⅱ)描述实验结果的双尺度计算模型

硬木中流体移动的双尺度多孔机理的依据(Ⅱ)描述实验结果的双尺度计算模型

         

摘要

The second part of this paper is devoted to the computational modelling of transient water migration in hardwood. During re-saturation, the moisture content, measured during the process by using X-ray attenuation (see part 1 of this paper), increases quickly very close to the cavity, but requires a very long time for the remaining part of the sample to absorb the moisture in wetting. For this configuration and this material, the macroscopic approach fails. Consequently, a dual-porosity approach is proposed. The computational domain uses a 2-D axisymmetric configuration for which the axial coordinate represents the macroscopic longitudinal direction of the sample whereas the radial coordinate allows the slow migration from each active vessel towards the fibre zone to be considered. The latter is a microscopic space variable. The moisture content field evolution depicts clearly the dual scale mechanisms:a very fast longitudinal migration in the vessel followed by a slow migration from the vessel towards the fibre zone.The macroscopic moisture content field resulting from this dual scale mechanism is in quite good agreement with the experimental data.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号