首页> 中文期刊> 《中国铸造:英文版》 >Microstructure evolution and mechanical properties of Mg-12Zn-2Y alloy containing quasicrystal phase fabricated by different casting processes

Microstructure evolution and mechanical properties of Mg-12Zn-2Y alloy containing quasicrystal phase fabricated by different casting processes

         

摘要

Although icosahedral quasicrystal phase(denoted as I-phase)has been verified as an outstanding reinforcing phase,the mechanical properties of quasicrystal-reinforced Mg-Zn-Y alloys fabricated by traditional casting processes are still unsatisfactory due to the serious segregation of intermetallic compounds.In this study,the microstructure and mechanical properties of Mg-12Zn-2Y alloy fabricated by different casting processes,including permanent mold casting,squeeze casting and rheo-squeeze casting with ultrasonic vibration,were systematically investigated and compared.The results show that massive,large-sized I-phase and Mg7Zn3 phase gather together in the permanent mold cast sample,while the squeeze casting process leads to the transformation of I-phase into fine lamellar morphology and the amount of Mg7Zn3 decreases.As to the rheo-squeeze casting process,when the ultrasonic vibration is exerted with power from 800 W to 1,600 W,theα-Mg grains are refined and spheroidized to a large extent,and the lamellar spacing of the eutectic structure is significantly reduced,accompanied by some tiny granular I-phase scattering in theα-Mg matrix.However,when the ultrasonic power continuously increases to 2,400 W,the eutectic structure becomes coarse.The best mechanical properties of the rheo-squeeze cast alloy are obtained when the ultrasonic power is 1,600 W.The microhardness,yield strength,ultimate tensile strength and elongation are 79.9 HV,140 MPa,236 MPa,and 3.25%,which are 44.1%,26.1%,25.5%,132.1%respectively higher than the corresponding values of the squeeze casting sample,and are 47.6%,44.3%,69.8%,and 253.3%respectively higher than the corresponding values of the permanent mold casting sample.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号