首页> 中文期刊>中国铸造 >Influence of pouring methods on filling process, microstructure and mechanical properties of AZ91 Mg alloy pipe by horizontal centrifugal casting

Influence of pouring methods on filling process, microstructure and mechanical properties of AZ91 Mg alloy pipe by horizontal centrifugal casting

     

摘要

Pouring position as the input heat source has great influence on the temperature field evolution. In this study, the Flow3D simulation software was applied to investigate the influence of pouring methods (with fixed or moving pouring channel) on AZ91 Mg alloy horizontal centrifugal casting (HCC) process. The simulation results show that the moving pouring channel method can effectively increase the cooling rate and formability of casting pipe. The casting experiment shows that an AZ91 Mg alloy casting pipe with homogeneous microstructure and clear contour was obtained by the moving pouring channel method, and the grain size of the casting pipe is significantly decreased. Meanwhile, serious macro-segregation appeared in the AZ91 casting pipe by the fixed pouring channel HCC process. Compared with the fixed pouring channel, the moving pouring channel can remarkably improve the ultimate tensile strength and elongation of the AZ91 HCC pipe from 142.2 MPa to 201.5 MPa and 6.2% to 6.7%, respectively .

著录项

  • 来源
    《中国铸造》|2018年第3期|196-202|共7页
  • 作者单位

    School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;

    School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;

    School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;

    School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;

    School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;

    School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;

    School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;

  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TG146.22;
  • 关键词

  • 入库时间 2023-07-26 00:16:39

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号