首页> 中文期刊> 《物理学报》 >横向划痕对光场调制的近场模拟

横向划痕对光场调制的近场模拟

         

摘要

熔石英亚表面划痕对入射激光的近场调制是导致光学元件低阈值损伤的主要因素之一.用三维时域有限差分方法研究了连续横向划痕的近场分布,对比了尖锐截面与光滑截面场调制的差异,着重探讨了光场调制与划痕宽深比R的关系.研究表明:酸蚀后的光滑截面有助于减弱近场调制,这类划痕的R〉10.0时调制较弱且相互接近,R〈5.0时调制显著增强.当兄取1-3时,亚表面的调制达最大值,最大电场幅值为入射波幅值的4.3倍.当R取1.o-3.5时,缺陷附近有80%以上取样点的最大电场幅值超过入射波幅值的2倍.随着深度的增大,强场区具有明显的“趋肤效应”:位于划痕正下方的强场区首先往左右两侧移动,然后移向抛物口界面以及水平界面,同时衍生出的多条增强线诱导整个亚表面层的光场增强.%Light intensification caused by cracks in fused silica subsurface is one of main factors of laser-induced damage to optical materials. Three-dimensional finite-difference time-domain method is used to simulate parabola-section-model lateral cracks. Moreover, the relationship between light intensification and breadth-to-depth ratio R is discussed. The results show that the morphology change after acid etching is an important cause of damage mitigation. Modulation is very weak and close to each other when R is greater than 10.0 and it increases rapidly when R less than 5.0. The electric field intensity reaches a maximal value when R ranges from 1.0 to 3.0, and the maximal electric field is 4.3 V/m. The electric field intensity of more than 80% samples exceed 2 times than the incident light when R ranges from 1.0 to 3.5. Intensified area has the skin effect with depth increasing. It is demonstrated that enhanced area lying directly below the crack firstly shifts to left and right sides, then it moves to parabola-section interface and the horizontal interface. Finally, the whole subsurface will be enhanced. In addition, electric field modulation firstly increases and then decreases in the z direction when depth is large enough.

著录项

  • 来源
    《物理学报》 |2012年第8期|212-218|共7页
  • 作者单位

    电子科技大学物理电子学院,成都610054;

    电子科技大学物理电子学院,成都610054;

    电子科技大学物理电子学院,成都610054/中国工程物理研究院激光聚变研究中心,绵阳621900;

    电子科技大学物理电子学院,成都610054;

    中国工程物理研究院激光聚变研究中心,绵阳621900;

    中国工程物理研究院激光聚变研究中心,绵阳621900;

    电子科技大学物理电子学院,成都610054;

    电子科技大学物理电子学院,成都610054;

  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类 O433.54;
  • 关键词

    横向划痕; 酸刻蚀; 时域有限差分; 激光辐照;

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号