首页> 中文期刊>物理学报 >基于探针光调制的皮秒分辨X-ray探测方法与实验∗

基于探针光调制的皮秒分辨X-ray探测方法与实验∗

     

摘要

Diagnostic measurement of single picosecond event in high energy density physics, laser fusion, plasma radiation, and combustion, is of great importance. However, the measuring of the shape of the single X-ray pulse and the synchronization of X-ray and the laser pulse in picosecond resolution is still a great challenge. Restricted by the transit time of electrons, the time-resolution limit of a conventional framing camera based on the microchannel plate is 40 ps. Centered on the full-optical modulation effect of the light-probe, a novel method for X-ray detection of picoseconds temporal resolution based on low temperature GaAs is proposed in this work. The basic physical mechanism of the detector can be explained in both macroscopical and microcosmic ways. In the macroscopical way, the X-ray radiation absorption in the sensor material produces a transient, non-equilibrium electron-hole pair distribution that results in a transient differential change of the local refractive index, which is then sensed by the reflectivity changes of the optical probe beam. In the microcosmic way, X-ray absorption creates photoelectrons and the core level holes are subsequently filled through Auger or fluorescence processes. These excitations ultimately increase conduction and valence band carriers that perturb optical reflectivity. To verify the proposed X-ray detection method, a Fabry-Perot detector is designed, which consists of a 5 µm thick GaAs layer surrounded by a GaAs/AlAs distributed Bragg reflector. The test is carried out on a femtosecond laser facility, where the X-ray source is produced by focusing the 56 fs Ti: Sapphire facility laser, with a central wavelength of 800 nm, onto an aluminum foil. Then the X-ray pulse induces a transient optical reflectivity change in GaAs, which is a powerful tool for establishing the high-speed X-ray detection. The experimental results indicate that this technology can be used to provide X-ray detectors with a temporal resolution of tens of picoseconds. By optimizing the material, the temporal resolution can be enhanced to be less than 1 ps. Through further development, this X-ray detector could provide an insight into previously unmeasurable phenomena in many fields. Future work will focus on developing much faster devices characterizing both the rise and fall time and imaging array technology.

著录项

  • 来源
    《物理学报》|2015年第20期|1-8|共8页
  • 作者单位

    中国科学院西安光学精密机械研究所;

    瞬态光学与光子技术国家重点实验室;

    西安 710119;

    中国科学院大学;

    北京 100049;

    中国科学院西安光学精密机械研究所;

    超快诊断技术重点实验室;

    西安 710119;

    中国科学院西安光学精密机械研究所;

    超快诊断技术重点实验室;

    西安 710119;

    中国科学院西安光学精密机械研究所;

    超快诊断技术重点实验室;

    西安 710119;

    中国科学院西安光学精密机械研究所;

    超快诊断技术重点实验室;

    西安 710119;

    中国科学院西安光学精密机械研究所;

    超快诊断技术重点实验室;

    西安 710119;

    中国科学院西安光学精密机械研究所;

    瞬态光学与光子技术国家重点实验室;

    西安 710119;

    中国科学院大学;

    北京 100049;

    中国科学院西安光学精密机械研究所;

    超快诊断技术重点实验室;

    西安 710119;

    中国科学院西安光学精密机械研究所;

    超快诊断技术重点实验室;

    西安 710119;

    中国科学院西安光学精密机械研究所;

    瞬态光学与光子技术国家重点实验室;

    西安 710119;

  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类
  • 关键词

    全光调制; 时间分辨; X-ray探测;

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号