首页> 中文期刊> 《物理学报 》 >铍反射层临界基准实验分析∗

铍反射层临界基准实验分析∗

             

摘要

作为重要的核材料,铍的中子核反应数据的可靠性对核工程有重要的意义。临界积分实验是检验核数据可靠性乃至指明核数据改进方向的基本手段。两个系列的铍金属反射层临界积分实验HMF058和HMF066,在铍的中子核数据检验中给出了明显矛盾的结论,使得这些积分实验无法评价核数据的品质,更不能指出明确的数据改进方向。本文提出利用相似性理论分析临界积分实验自洽性的方法,主要采用基于灵敏度系数的相似性指标,对两系列实验进行相似度分析。分析结果显示,对于两系列中高度相似的实验,积分量模拟结果与实验值的偏差存在显著的差异。数值模拟与理论分析都表明,无法通过改进核数据来同时改进HMF058和HMF066的模拟计算与实验的符合。据此,推论HMF058和(或)HMF066基准临界积分实验的测量或评价可能存在系统性的疏失,有必要对实验进行细致的再评价,或开展可靠的新积分实验以排除不可靠的实验,避免误导核数据的检验。%Beryllium is an important nuclear material, and the reliability of the data for neutron-induced nuclear reactions of beryllium is of significant importance for nuclear engineering. The evaluated nuclear data for beryllium have been“improving”from ENDF/B-VI to ENDF/B-VII.0 and then to ENDF/B-VII.1. The comparisons between the calculated and experimental results of the criticality benchmark experiments are the essential means to test the reliability of nuclear data and indicate the direction of the improvement of nuclear data. There are several series of criticality benchmark experiments with beryllium reflector available for testing beryllium nuclear data. However, the calculated results are not consistent across these benchmarks. Two series of these benchmarks that are similar to each other, namely HMF058 and HMF066, are selected for discussion. HMF058 and HMF066 are both highly enriched metal fast benchmarks, with five cases of experiments in HMF058 benchmark and nine in HMF066. With ENDF/B-VII.1 cross sections, a clearly increasing C/E keff bias is observed with increasing beryllium reflector thickness for the five cases in HMF058 benchmark, while using ENDF/B-VII.0 cross sections, all the C/E values for keff remain within the experimental uncertainty. However, HMF066 are calculated very well with ENDF/B-VII.1 cross sections, but a bias of about 500 pcm is observed with ENDF/B-VII.0 data. These results are particularly puzzling since there is little difference between the configurations of HMF058 and HMF066, so the quality of beryllium nuclear data cannot be evaluated and the direction for improvement cannot be figured out either. The similarity method, based on the use of sensitivity coefficients calculated by sensitivity and uncertainty code SURE, is used to analyze the similarity between two series of benchmark experiments. First, the neutronics similarity index between each pair of the total of fourteen cases of experiments from the two benchmarks is calculated. Then, the most similar experiments from HMF066 to each case of the five experiments from HMF058 are selected by similarity index, and the experiments are grouped into five“similarity suites”, each with one from HMF058 and the others from HMF066. The experiments in the same similarity suite are highly similar to each other on neutronics. In a similarity suite, the deviations of calculated results and experimental values are disagreed for experiments from different series, but the deviations agree with each other for experiments from the same series. This shows that the agreement between the calculated results and experimental values cannot be improved by revising the nuclear data. It is necessary to carry out the detailed reevaluation of the benchmark experiments, or to develop reliable new integral experiments to exclude unreliable experiments, in order to avoid the misleading of the nuclear data testing.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号