首页> 中文期刊> 《物理学报》 >He,Au离子辐照AuCu3致元素表面偏析∗

He,Au离子辐照AuCu3致元素表面偏析∗

         

摘要

Surface segregation is a significant phenomenon due to its influence on many surface processes, such as corrosion, oxidation and catalysis. Defects and vacancies produced by ion irradiation in alloys used in reactors or other radiation environments may also induce surface segregation. In this work, we deposit AuCu3 film on a Si(111) substrate by magnetic sputtering. He+ and Au+ produced by pelletron are used to simulate radiation fields in reactors, and surface segregation induced by ion irradiation is investigated. SRIM software is used to simulate ion range and displacements produced in sample. Rutherford backscattering spectrometry is used to determine concentration changes near the surface of sample before and after irradiation. The results show that two kinds of ion irradiations lead to different surface segregation trends. When irradiated by 2 MeV He+, Au elements are segregated at the surface of sample. Oppositely, when irradiated by 1 MeV Au+, Cu elements are observed at the surface of sample. After analysis and discussion, we consider that this phenomenon is induced by different vacancy distributions by He+and Au+irradiation. 2 MeV He+produced Au and Cu vacancies are distributed in whole film from surface to substrate smoothly, except very near the surface the concentration of vacancies has an obvious reduction. As a result, a gradient of the vacancy concentration is formed between the surface and the interior of the film. As the concentration of vacancies on the surface is lower than in interior, it would lead to vacancy diffusion from interior to surface, equivalent to diffusions of Cu and Au atoms along the opposite directions. Because of lighter atomic mass, Cu atom has a faster diffusion rate than Au atom. As a result, the concentration of Au atoms near the surface increases. Unlike He+, Au+ produces a mass of vacancies near the surface of the film, consistent with the Bragg peak by energy deposition of Au+, but decreases rapidly inside the film. It leads to a gradient of the vacancy concentration from surface to interior of the film. When vacancies diffuse from surface to interior, Cu and Au atoms diffuse from interior to surface, the lighter Cu atom concentration increases faster than Au atom concentration. Our research results explain the different segregation trends by light ion with higher energy and heavy ion with lower energy. It may help to understand the surface segregation of alloys used in complex irradiation field.%采用磁控溅射方法在单晶硅(111)衬底上制备了AuCu3薄膜,用2 MeV He离子和1 MeV Au离子对薄膜进行辐照,用卢瑟福背散射对He, Au离子辐照前后AuCu3薄膜近表面的成分变化进行了分析,对不同离子辐照导致的表面元素偏析行为进行了研究。结果表明:当2 MeV He离子辐照时,随着辐照剂量增大,观察到样品近表面Au元素偏析的趋势;当1 MeV Au离子辐照时,随着辐照剂量增大,观察到样品近表面Cu元素偏析的趋势,与He离子辐照相反。通过对He, Au离子在样品中产生的靶原子空位及其分布分析,发现靶原子空位浓度分布的梯度是导致两种不同表面元素偏析趋势的原因,空位扩散是其中的主要机理。

著录项

  • 来源
    《物理学报》 |2016年第3期|038201-1-038201-7|共7页
  • 作者单位

    中国工程物理研究院材料研究所;

    绵阳 621900;

    表面物理与化学重点实验室;

    绵阳 621900;

    中国科学院高能物理研究所;

    北京 100049;

    中国工程物理研究院材料研究所;

    绵阳 621900;

    中国工程物理研究院材料研究所;

    绵阳 621900;

  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类
  • 关键词

    离子辐照; 表面偏析; AuCu3;

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号