首页> 中文期刊> 《物理学报》 >一种通用的卫星导航信号码时延估计误差评估方法

一种通用的卫星导航信号码时延估计误差评估方法

         

摘要

卫星导航信号的码时延估计误差是决定系统服务性能的关键因素,迫切需要对多种不同调制与复用方式的导航信号进行全面的码时延估计误差性能评估,从而为后期的系统应用提供重要的选择依据.为此,本文提出了通用的码时延估计误差评估方法.首先,概括了导航接收机的码跟踪环路模型,根据是否匹配接收以及是否相干处理,将目前的导航接收机归纳为四种类型.其次,在假设码时延估计误差非常小的条件下,分别给出了匹配接收下相干处理和非相干处理时的估计误差以及相互之间的关系;推导了非匹配接收下非相干处理时的估计误差,并讨论了与相干处理时的关系.最后,推导了码时延估计误差的齐夫-扎凯界限,解决了估计误差不满足非常小这一假设条件时的评估.本文提出的评估方法均以导航信号的功率谱密度表示,为信号设计和接收机的研制提供了重要的理论指导,同时也给具体信号的评估带来了极大便利.仿真实验中对新一代典型导航信号的码时延估计误差做了有效评估.%With the system upgrading and construction demand for new generation global navigation satellite system (GNSS), the navigation signal modulation and multiplexing technology have made great progress. Up to now, many modulation modes for single signal component and many constant-envelope multiplexing methods for multiple signal components have been proposed, meanwhile the new signal structure continues to be presented. The satellite navigation signal code delay estimation error is the most critical factor that determines system service performance. Therefore, it is urgent to give an overall performance evaluation on code delay estimation error of GNSS signals with different modulation and multiplexing modes, and consequently provide a crucial selection basis for subsequent system application. The code delay estimation error is related to not only signal structure, but also receiver's receiving model and processing method of code tracking loop. The receiving models of new generation navigation receivers can be classified as two types. One is matched receiving model which means that the reference signal is the same as receiving signal, and the other is unmatched receiving model, where the reference signal is not the same as receiving signal. Recently, the unmatched receiving model has been extensively applied to the processing of binary offset carrier class signals. Therefore, in this paper we propose an integrated evaluation method for code delay estimation error of navigation signals. Firstly, the equivalent model for the code tracking loop of navigation receivers is generalized and the current navigation receivers are classified as four types based on whether matched receiving or coherent processing is used. Because the code delay estimation error is dependent on the type, it is necessary to provide an evaluation method for each type. Then, on the assumed condition that the code delay estimation error is very small, the expressions of code delay estimation error for coherent processing and non-coherent processing under matched receiving model are respectively presented and the relationships between each other are discussed under various noise environments and the code loop interval going to zero. The expression of code delay estimation error for non-coherent processing under unmatched receiving model is derived and the relationship with coherent processing is discussed under the same condition as matched receiving model. Finally, the Ziv-Zakai bound of code delay estimation error is derived, which provides a perfect evaluation method when the code delay estimation error is not very small. The proposed method is expressed by power spectrum density of navigation signals, which provides important theoretical guidance for signal design and receiver development, and simultaneously brings great convenience to the evaluation of the signal. Simulation experiment attests to effective evaluation on the code delay estimation error of new generation typical navigation signals.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号