首页> 中文期刊> 《物理学报》 >纳米微结构表面与石墨烯薄膜的界面黏附特性研究

纳米微结构表面与石墨烯薄膜的界面黏附特性研究

         

摘要

The performance of graphene can be influenced by its surface mophology, while the surface morphology of graphene is closely related to the substrate. The adsorption and peeling process of graphene on a corrugated surface can provide a theoretical basis for the functional preparation and transfer of graphene. In this work, the adhesion properties and peeling process of graphene on nanostructured substrate are investigated by using molecular dynamics (MD) simulation. As an effective tool of atomic collision theory, MD simulation can provide detailed information about the adsorption configuration and peeling properties of graphene on the nanostructure surface, making up for the deficiency of experiment. The results indicate that graphene can conformably coat on the surface, partially adhere to or remain flat on the top of the stepped substrate. We find that the continuous transition occurs in the adsorption configuration of graphene on the stepped substrate, but the repeated process appears in the transition from partial adherence to conformable coating. When graphene coats on the nanostructured substrate conformably, the adsorption energy can reach its peak value. The adsorption configuration of graphene can change from suspension to partial adhesion after the adsorption energy has exceeded 360 eV· ??2. It is also shown that the average peeling force fluctuates periodically when the absorption configuration of graphene is conformably coated or suspended on the stepped substrate. Two kinds of behaviors can be noticed in the peeling process. The graphene can directly slide over the bottom while it is fully coated on the surface. The graphene is separated directly from the corrugated surface while it suspends or partially adheres to the surface. If the absorption configuration of graphene is in the suspension state, the average peeling force appears to change drastically within a section of peeling distance and then decreases immediately below zero. Although the flexural stiffness of graphene can be overcome, the interfacial friction between graphene and the substrate is also an essential factor affecting the final adsorption configuration. In this paper, we propose a theoretical formula for the average peeling force according to the changes of size parameters on the nanostructured substrate. The theoretical formula is validated by the simulation results. In addition, with the increase of peeling angle, the average peeling force first increases and then becomes smaller. As a result, a larger average peeling force can be found when the graphene with Stone-Wales defect structure is peeled from the flat substrate. With the increase of double vacancy defect, the maximum peeling force decreases in a certain range, whereas it increases beyond this range. This work can provide a theoretical reference for exploring the peeling property and the adhesion mechanism of graphene on nanostructure surface.%石墨烯性能的发挥受石墨烯表面形貌的影响,而石墨烯表面形貌则与基底密切相关.石墨烯在纳米微结构表面的吸附与剥离可以为石墨烯的功能化制备和转移提供理论基础.分子动力学模拟能提供石墨烯在纳米微结构表面的吸附构型和剥离特性等详细信息,可以弥补实验的不足.本文利用LAMMPS分子动力学模拟软件,从吸附能角度研究了石墨烯在矩形微结构表面的黏附特性,并进一步探讨了石墨烯从矩形微结构表面剥离的行为.研究表明:石墨烯的吸附构型在矩形微结构表面的转变是连续的,但由部分贴合状态向完全贴合状态的转变是一个反复的过程,当石墨烯完全贴合微结构表面时吸附能最大;从微结构表面剥离石墨烯时,剥离力会出现周期性的波动.剥离过程表现为两种形式:完全贴合时,石墨烯是直接滑过槽底;而当悬浮构型或部分贴合构型时,石墨烯是直接从微结构表面分离.本文给出了平均剥离力随微结构尺寸参数变化的理论公式,该公式与模拟结果拟合较好.此外,随着剥离角度的变大,平均剥离力先变大后变小,从平整基底表面剥离具有Stone-Wales缺陷结构的石墨烯会使剥离力变大.研究结果可为探究石墨烯在纳米微结构表面的剥离行为、揭示其黏附机理提供理论参考.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号