首页> 外文学位 >In-Memory Computing by Using Nano-ionic Memristive Devices
【24h】

In-Memory Computing by Using Nano-ionic Memristive Devices

机译:使用纳米离子忆阻器件进行内存中计算

获取原文
获取原文并翻译 | 示例

摘要

By reaching to the CMOS scaling limitation based on the Moore's law and due to the increasing disparity between the processing units and memory performance, the quest is continued to find a suitable alternative to replace the conventional technology. The recently discovered two terminal element, memristor, is believed to be one of the most promising candidates for future very large scale integrated systems.;This thesis is comprised of two main parts, (Part I) modeling the memristor devices, and (Part II) memristive computing. The first part is presented in one chapter and the second part of the thesis contains five chapters. The basics and fundamentals regarding the memristor functionality and memristive computing are presented in the introduction chapter. A brief detail of these two main parts is as follows:;Part I: Modeling- This part presents an accurate model based on the charge transport mechanisms for nanoionic memristor devices. The main current mechanism in metal/insulator/metal (MIM) structures are assessed, a physic-based model is proposed and a SPICE model is presented and tested for four different fabricated devices. An accuracy comparison is done for various models for Ag/TiO2/ITO fabricated device. Also, the functionality of the model is tested for various input signals.;Part II: Memristive computing- Memristive computing is about utilizing memristor to perform computational tasks. This part of the thesis is divided into neuromorphic, analog and digital computing schemes with memristor devices.;-- Neuromorphic computing- Two chapters of this thesis are about biological-inspired memristive neural networks using STDP-based learning mechanism. The memristive implementation of two well-known spiking neuron models, Hudgkin-Huxley and Morris-Lecar, are assessed and utilized in the proposed memristive network. The synaptic connections are also memristor devices in this design. Unsupervised pattern classification tasks are done to ensure the right functionality of the system.;-- Analog computing- Memristor has analog memory property as it can be programmed to different memristance values. A novel memristive analog adder is designed by Continuous Valued Number System (CVNS) scheme and its circuit is comprised of addition and modulo blocks. The proposed analog adder design is explained and its functionality is tested for various numbers. It is shown that the CVNS scheme is compatible with memristive design and the environment resolution can be adjusted by the memristance ratio of the memristor devices.;-- Digital computing- Two chapters are dedicated for digital computing. In the first one, a development over IMPLY-based logic with memristor is provided to implement a 4:2 compressor circuit. In the second chapter, A novel resistive over a novel mirrored memristive crossbar platform. Different logic gates are designed with the proposed memristive logic method and the simulations are provided with Cadence to prove the functionality of the logic. The logic implementation over a mirrored memristive crossbars is also assessed.
机译:通过基于摩尔定律并由于处理单元和存储器性能之间的差异越来越大而达到CMOS缩放限制,人们继续寻求寻找合适的替代方案来代替传统技术。最近发现的两个终端元件忆阻器被认为是未来超大规模集成系统最有希望的候选者之一。本论文由两个主要部分组成:(第一部分)对忆阻器器件进行建模;(第二部分) )忆阻计算。第一部分为一章,第二部分为五章。简介一章介绍了有关忆阻器功能和忆阻计算的基础知识。这两个主要部分的简要说明如下:;第一部分:建模-该部分基于纳米离子忆阻器器件的电荷传输机制提供了一个精确的模型。评估了金属/绝缘体/金属(MIM)结构中的主要电流机制,提出了基于物理的模型,并针对四个不同的制造设备提出了SPICE模型并进行了测试。针对Ag / TiO2 / ITO制成的器件的各种模型进行了精度比较。此外,还针对各种输入信号测试了模型的功能。第二部分:忆阻计算-忆阻计算是关于利用忆阻器执行计算任务。本文的这一部分分为具有忆阻器设备的神经形态,模拟和数字计算方案。-神经形态计算-本论文的两章是关于基于STDP的学习机制的生物启发性忆阻神经网络。在拟议的忆阻网络中评估并利用了两种著名的尖刺神经元模型Hudgkin-Huxley和Morris-Lecar的忆阻实现。突触连接也是该设计中的忆阻器设备。完成无监督的模式分类任务以确保系统的正确功能。-模拟计算-忆阻器具有模拟存储属性,因为可以将其编程为不同的忆阻值。一种新颖的忆阻模拟加法器,采用连续数值系统(CVNS)方案设计,其电路由加法和取模模块组成。说明了拟议的模拟加法器设计,并对其各种功能进行了测试。结果表明,CVNS方案与忆阻设计兼容,并且可以通过忆阻器器件的忆阻比来调整环境分辨率。-数字计算-两章专门讨论数字计算。在第一个中,提供了基于忆阻器的基于IMPLY的逻辑的开发,以实现4:2压缩器电路。在第二章中,“一种新颖的电阻器在一种新颖的镜像忆阻交叉开关平台上”。利用提出的忆阻逻辑方法设计了不同的逻辑门,并通过Cadence提供了仿真以证明逻辑的功能。还评估了镜像忆阻交叉开关的逻辑实现。

著录项

  • 作者

    Amirsoleimani, Amirali.;

  • 作者单位

    University of Windsor (Canada).;

  • 授予单位 University of Windsor (Canada).;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号