首页> 外文学位 >Acute and Chronic Neural Stimulation via Mechano-Sensitive Ion Channels
【24h】

Acute and Chronic Neural Stimulation via Mechano-Sensitive Ion Channels

机译:通过机械敏感离子通道进行急性和慢性神经刺激

获取原文
获取原文并翻译 | 示例

摘要

Neural stimulation techniques for eliciting calcium influx can elucidate the physiological roles of specific neural populations. To overcome some of the limitations of existing techniques such as poor specificity and noxious effects of heat, I developed a technology for non-invasive control of neural activities using magnetic forces and magnetic nanoparticles (MNPs) which offer deep tissue penetration and controllable dosage. Extensive investigations with different neuro-toxins and experimental conditions support that the mechanism of magnetic stimulation that involves membrane-bound MNPs transducing magnetic forces into mechanical stretching of the cell membrane to enhance the opening probability of mechano-sensitive N-type calcium ion channels to induce calcium influx.;Making use of the ability of neural networks to actively regulate their ratio of excitatory to inhibitory ion channel/receptor, I also performed chronic magnetic stimulation on fragile X syndrome (FXS) model neural networks. We found that chronic magnetic stimulation reduced the density of N-type calcium ion channels whose expression is increased in FXS. This technique demonstrates the potential of using bio-magnetic/mechanical forces to modulate expressions of mechano-sensitive ion channels where they are over-expressed in diseases such as abnormal nociception.;Nonetheless, there are still a few areas where the technique can be improved. Firstly, it is the use of MNPs with more uniform properties to have greater control on magnetic stimulations. Secondly, the technique needs to be useful for in vivo studies. Therefore, I started researching on magnetotactic bacteria (MTB) which produce biological MNPs with superior properties such as uniform sizes and highly homogenous magnetic properties with the goal of harvesting MNPs from them.;MTB, however, grow extremely slowly and the number of MNPs produced/bacterium is low. One way to overcome this problem is to evolve MTB over-producers of MNPs but this strategy is constrained by the absence of a selection platform that is quantitative and offer high throughput. To overcome this problem, I combined random chemical mutagenesis and selection using a magnetic ratcheting platform to generate and isolate MTB over-producers that produce twice as many MNPs/bacterium after 5 rounds of mutation/selection. I next designed a magnetic microfluidic device and demonstrate as a proof of concept, that it can be coupled to a bioreactor for high throughput microfluidic selection of MTB over-producers.
机译:用于引起钙内流的神经刺激技术可以阐明特定神经群体的生理作用。为了克服现有技术的某些局限性,例如特异性差和热的有害影响,我开发了一种使用磁力和磁性纳米颗粒(MNP)进行神经活动的非侵入性控制技术,该技术可提供深层组织渗透和可控制的剂量。用不同的神经毒素和实验条件进行的广泛研究支持,涉及膜结合MNP的磁刺激机制将磁力转换为细胞膜的机械拉伸,从而增强了机械敏感的N型钙离子通道诱导的开放可能性。通过利用神经网络的能力来主动调节其兴奋性与抑制性离子通道/受体的比率,我还对易碎X综合征(FXS)模型神经网络进行了慢性磁刺激。我们发现慢性磁刺激降低了FXS中表达增加的N型钙离子通道的密度。这项技术展示了利用生物电磁力调节机械敏感离子通道表达的潜力,这些通道在诸如异常伤害感受之类的疾病中过度表达;尽管如此,仍有一些领域可以改进该技术。首先,使用具有更均匀特性的MNP可以更好地控制磁刺激。其次,该技术需要用于体内研究。因此,我开始研究趋磁细菌(MTB),该趋磁细菌产生具有优良特性的生物MNP,例如大小一致,磁特性均一的磁体,目的是从中获取MNP;然而,MTB生长非常缓慢,产生的MNP数量也很多。 /细菌低。解决此问题的一种方法是发展MNP的MTB过量生产者,但由于缺乏定量和提供高通量的选择平台,该策略受到了限制。为了克服这个问题,我结合了随机化学诱变和使用磁性棘轮平台进行选择,以生成和分离MTB过量产生子,在5轮突变/选择后产生的MTB /细菌数量是原来的两倍。接下来,我设计了一种磁性微流体装置,并作为概念验证进行了演示,该装置可以与生物反应器连接,以选择MTB过量生产者进行高通量微流体选择。

著录项

  • 作者

    Tay Kah Ping, Andy.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Bioengineering.;Neurosciences.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 191 p.
  • 总页数 191
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号