首页> 外文学位 >Channelization Techniques for Wideband Radios
【24h】

Channelization Techniques for Wideband Radios

机译:宽带无线电的信道化技术

获取原文
获取原文并翻译 | 示例

摘要

From the very start of mobile communications, wireless data traffic volume and the number of applications have increased continuously and this continued increase will eventually necessitate the use of wider signal bandwidths by the fundamental constraints imposed by Shannon's theorem. Additionally, the air channel is a common limited resource that is shared by all users and applications. While this limited wireless resource has mostly been pre-allocated, the utilization at any given time is often very low. For this environment, cognitive radio and carrier aggregation are potential solutions. Both cognitive radio and carrier aggregation require the processing of wideband signals unlike what is normally the focus of conventional narrow band receivers. This, in turn, makes it necessary to design receivers with a large BW and high dynamic range, and these conflicting requirements typically form the bottleneck in existing systems.;Here, we discuss channelization techniques using an analog FFT (fast Fourier transform) to solve the bottleneck. First, a fully integrated hybrid filter bank ADC using an analog FFT is presented. The proposed structure enables the signals in each channel of a wideband system to be separately digitized using the full dynamic range of the ADC, so the small signals in wideband can benefit in terms of lowered quantization noise while accommodating large in-band signals. The prototype which is implemented in TSMC's 40nm CMOS GP process with VGA gains ranging from 1 to 4 shows 90.4mW total power consumption for both the analog and digital sections.;Second, analog polyphase-FFT technique is introduced. Polyphase-FFT allows for low power implementations of high performance multi-channel filter banks by utilizing computation sharing not unlike a standard FFT. Additionally, it enables a longer "effective window length" than is possible in a standard FFT. This characteristic breaks the trade-off between the main-lobe width and the side-lobe amplitudes in normal finite impulse response (FIR) filters. The 4-channel I/Q prototype is implemented in TSMC's 65nm GP technology. The measured trans- fer function shows >38dB side-lobe suppression at 1GS/s operation. The average measured IIP3 is +25dBm differential power and the total integrated output noise is 208microVrms. The total power consumption for the polyphase-FFT filter bank (8- channels total) is 34.6mW (34.6pJ/conv).
机译:从移动通信的一开始,无线数据流量和应用程序的数量一直在不断增加,而这种持续增长最终将需要由Shannon定理施加的基本约束来使用更宽的信号带宽。此外,空中通道是所有用户和应用程序共享的公共有限资源。尽管此有限的无线资源大部分已被预先分配,但在任何给定时间的利用率通常都非常低。对于这种环境,认知无线电和载波聚合是潜在的解决方案。认知无线电和载波聚合都需要处理宽带信号,这与常规窄带接收器通常关注的焦点不同。反过来,这使得必须设计具有大BW和高动态范围的接收机,而这些相互矛盾的要求通常会成为现有系统的瓶颈。在这里,我们讨论使用模拟FFT(快速傅立叶变换)的信道化技术来解决瓶颈。首先,介绍了使用模拟FFT的完全集成的混合滤波器组ADC。所提出的结构使宽带系统每个通道中的信号都可以使用ADC的全部动态范围分别进行数字化,因此宽带中的小信号在适应较大带内信号的同时,可以降低量化噪声。该原型在台积电(TSMC)的40nm CMOS GP工艺中实现,VGA增益为1-4,在模拟和数字部分的总功耗为90.4mW。第二,介绍了模拟多相FFT技术。多相FFT与标准FFT一样,通过利用计算共享实现了高性能多通道滤波器组的低功耗实现。另外,与标准FFT相比,它可以实现更长的“有效窗口长度”。此特性打破了常规有限脉冲响应(FIR)滤波器中主瓣宽度和旁瓣幅度之间的权衡。 4通道I / Q原型是采用TSMC的65nm GP技术实现的。在1GS / s的工作频率下,测得的传递函数显示出> 38dB的旁瓣抑制。平均测得的IIP3为+ 25dBm差分功率,总的集成输出噪声为208microVrms。多相FFT滤波器组(总共8个通道)的总功耗为34.6mW(34.6pJ / conv)。

著录项

  • 作者

    Shin, Hundo.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Electrical engineering.;Engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号