首页> 外文学位 >Physical Vapor Deposition and Defect Engineering of Europium Doped Lutetium Oxide
【24h】

Physical Vapor Deposition and Defect Engineering of Europium Doped Lutetium Oxide

机译:Do掺杂氧化ute的物理气相沉积与缺陷工程

获取原文
获取原文并翻译 | 示例

摘要

Lutetium oxide doped with europium (Lu2O3:Eu 3+) has been established as a promising scintillator material with properties that are advantageous when compared to other scintillators such as cesium iodide doped with thallium (CsI:Tl). Due to high X-ray attenuation characteristics, Lu2O3:Eu3+ is an attractive material for use in high resolution digital X-ray imaging systems. However, challenges still remain especially in the area of light output for Lu 2O3:Eu3+. Processing by physical vapor deposition (PVD) and manipulation of oxygen defect structure was explored in order to better understand the effect on the scintillation phenomena.;PVD results were obtained using high temperature radio frequency sputtering (RF) and pulsed laser deposition (PLD) systems. Characterization of light output by radial noise power spectrum density measurements revealed that high temperature RF films were superior to those obtained using PLD. Optimization of sputtered films based on light output over a range of process parameters, namely temperature, power, pressure, and substrate orientation was investigated. Parameterization of deposition conditions revealed that: 75 watts, 10.00 mtorr, and 800°C were optimum conditions for Lu2O3:Eu 3+ films.;Manipulation of anionic defect structure in similar material systems has been shown to improve scintillation response. Similar methods for Lu 2O3:Eu3+ were explored for hot pressed samples of Lu2O3:Eu3+; via controlled atmosphere annealing, and use of extrinsic co-doping with calcium. The controlled atmosphere experiments established the importance of oxygen defect structure within Lu 2O3:Eu3+ and showed that fully oxidized samples were preferred for light output. The second method utilized co-doping by the addition of calcium which induced oxygen vacancies and by Frenkel equilibrium changed the oxygen interstitial population within the Lu2O 3:Eu3+ structure. The addition of calcium was investigated and revealed that scintillation was improved with a maximum response occurring at 340ppm of calcium. PVD optimization and co-doping experimental results provided a template for the use of calcium co-doped Lu2O3 :Eu3+ targets for deposition of films. Preliminary deposition results were promising and revealed that small additions (around 550 ppm) of calcium resulted in better activator efficiency. Calcium co-doped films have a predicted increase in the light yield greater than 14% when compared to analogous un-doped Lu2O3:Eu3+ films at 60keV.
机译:掺有oxide的氧化((Lu2O3:Eu 3+)已被确立为一种有前途的闪烁体材料,与其他闪烁体如掺ped的碘化铯(CsI:Tl)相比,其性能更为优越。由于高X射线衰减特性,Lu2O3:Eu3 +是用于高分辨率数字X射线成像系统的有吸引力的材料。然而,仍然存在挑战,特别是在Lu 2O3:Eu3 +的光输出领域。为了更好地理解对闪烁现象的影响,探索了通过物理气相沉积(PVD)进行处理和操纵氧缺陷结构的方法。; PVD结果是使用高温射频溅射(RF)和脉冲激光沉积(PLD)系统获得的。通过径向噪声功率谱密度测量表征的光输出表明,高温RF薄膜优于使用PLD获得的薄膜。研究了基于在一系列工艺参数(即温度,功率,压力和基板方向)上的光输出来优化溅射膜的方法。沉积条件的参数化表明:75 W,10.00 mtorr和800°C是Lu2O3:Eu 3+薄膜的最佳条件。在类似材料系统中操纵阴离子缺陷结构已显示出可改善闪烁响应。对Lu 2O3:Eu3 +的热压样品探索了类似的方法。通过受控气氛退火,以及与钙的非本征共掺杂。受控气氛实验确定了Lu 2O3:Eu3 +中氧缺陷结构的重要性,并表明完全氧化的样品是光输出的首选。第二种方法利用共掺杂,通过添加钙来诱导氧空位,并通过Frenkel平衡改变Lu2O 3:Eu3 +结构内的氧间隙人口。对钙的添加进行了研究,结果表明,在340ppm的钙时,闪烁现象得到了改善,并具有最大响应。 PVD优化和共掺杂实验结果为使用钙共掺杂的Lu2O3:Eu3 +靶材沉积薄膜提供了模板。初步沉积结果令人鼓舞,并表明少量添加(约550 ppm)钙可提高活化剂效率。与60keV的类似未掺杂Lu2O3:Eu3 +薄膜相比,钙共掺杂薄膜的光产率预计增加了14%以上。

著录项

  • 作者

    Gillard, Scott James.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Materials science.;Engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号