首页> 外文学位 >Mechanisms of EUV Exposure: Photons, Electrons and Holes
【24h】

Mechanisms of EUV Exposure: Photons, Electrons and Holes

机译:EUV暴露的机理:光子,电子和空穴

获取原文
获取原文并翻译 | 示例

摘要

The microelectronics industry's movement toward smaller and smaller feature sizes has necessitated a shift to Extreme Ultra-Violet (EUV) lithography to be able to pattern sub 20-nm features, much like earlier shifts from i-line to 248 nm. However, this shift from 193-nm lithography to EUV (13.5 nm) poses significant obstacles. EUV is the first optical lithography to operate in an energy range (92 eV per photon vs. 6.4 eV per photon for 193 nm lithography) above the electron binding energies of common resist atomic species. This significant energy increase complicates resist design. For exposures of equal dose, resists receive 14 times fewer photons in EUV relative to 193 nm. Thus, for EUV photoresists to be able to reap the benefits of smaller resolution they must also maximize absorption while still maintaining photo-reactivity. In order to design EUV resists for manufacturing, the first step is to understand the mechanisms of exposure involved in EUV photochemistry.;In this Thesis, we present three studies performed to understand the behavior and reactivity of electrons and holes in chemically amplified photoresists. These three studies can be characterized by their approaches---computational and experimental, and serve to develop better resist models for EUV reactions and mechanisms.;The first study discusses the adaptation and improvement of a Monte Carlo electron-resist simulation program to understand EUV photochemistry by modeling total electron yield, thickness loss, and sub-10 eV electron-resist interactions. The second study evaluates the mechanism of internal excitation as a possible pathway for acid generation in EUV resists by the investigation of electron-induced fluorescence. The third study aims to investigate the reactivity of electrons and holes in chemically amplified resists and determine their relative contributions to acid production.
机译:微电子行业朝着越来越小的特征尺寸发展的趋势,使得必须转变为极紫外(EUV)光刻技术,以便能够图案化20纳米以下的特征,这与之前从i线向248纳米的转变非常相似。但是,从193 nm光刻技术向EUV(13.5 nm)技术的转变带来了重大障碍。 EUV是第一种在高于普通抗蚀剂原子种类的电子结合能的能量范围内(每光子92 eV对193 nm光刻的每光子6.4 eV)工作的光学光刻。能量的显着增加使抗蚀剂的设计复杂化。对于相同剂量的曝光,相对于193 nm,抗蚀剂在EUV中接收的光子少14倍。因此,为了使EUV光刻胶能够获得较小分辨率的好处,它们还必须在保持光反应性的同时使吸收最大化。为了设计用于制造的EUV抗蚀剂,第一步是了解涉及EUV光化学的曝光机理。在本论文中,我们进行了三项研究,以了解化学放大的光刻胶中电子和空穴的行为和反应性。这三项研究可以通过其计算方法和实验方法来表征,并且可以为EUV反应和机理开发更好的抗蚀剂模型。第一项研究讨论了蒙特卡罗电子抗蚀剂模拟程序对EUV的适应和改进。通过模拟总电子产率,厚度损失和低于10 eV的电子-电阻相互作用来进行光化学反应。第二项研究通过研究电子诱导的荧光来评估内部激发机制,该机制是EUV抗蚀剂中酸生成的可能途径。第三项研究旨在研究化学放大抗蚀剂中电子和空穴的反应性,并确定它们对产酸的相对贡献。

著录项

  • 作者

    Narasimhan, Amrit.;

  • 作者单位

    State University of New York at Albany.;

  • 授予单位 State University of New York at Albany.;
  • 学科 Nanoscience.;Condensed matter physics.;Chemistry.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号