首页> 外文学位 >A standardized framework for evaluating the skill of regional climate downscaling techniques.
【24h】

A standardized framework for evaluating the skill of regional climate downscaling techniques.

机译:评估区域气候降尺度技术技能的标准化框架。

获取原文
获取原文并翻译 | 示例

摘要

Regional climate impact assessments require high-resolution projections to resolve local factors that modify the impact of global-scale forcing. To generate these projections, global climate model simulations are commonly downscaled using a variety of statistical and dynamical techniques. Despite the essential role of downscaling in regional assessments, there is no standard approach to evaluating various downscaling methods. Hence, impact communities often have little awareness of limitations and uncertainties associated with downscaled projections.;To develop a standardized framework for evaluating and comparing downscaling approaches, I first identify three primary characteristics of a distribution directly relevant to impact analyses that can be used to evaluate a simulated variable such as temperature or precipitation at a given location: (1) annual, seasonal, and monthly mean values; (2) thresholds, extreme values, and accumulated quantities such as 24h precipitation or degree-days; and (3) persistence, reflecting multi-day events such as heat waves, cold spells, and wet periods. Based on a survey of the literature and solicitation of expert opinion, I select a set of ten statistical tests to evaluate these characteristics, including measures of error, skill, and correlation.;I apply this framework to evaluate the skill of four downscaling methods, from a simple delta approach to a complex asynchronous quantile regression, in simulating daily temperature at twenty stations across North America. Identical global model fields force each downscaling method, and the historical observational record at each location is randomly divided by year into two equal parts, such that each statistical method is trained on one set of historical observations, and evaluated on an entirely independent set of observations. Biases relative to observations are calculated for the historical evaluation period, and differences between projections for the future.;Application of the framework to this broad range of downscaling methods and locations is successful in that: (1) the downscaling method used is identified as a more important determinant of data quality than station location or GCM; and (2) key differences between downscaling methods are made apparent. For tests focusing on the general distribution of the variable, all methods except bias correction are relatively successful in simulating observed climate, suggesting that if an impact is most sensitive to changes in the mean, even a relatively simple downscaling approach such as "delta" will significantly improve simulation of local-scale climate. For tests that focus on the tails of the distribution, however, differences do arise between simple vs. quantile-based downscaling methods. Specifically, the latter appears less sensitive to location and more consistently able to reproduce observed climate. In terms of future projections, the most notable differences between downscaling methods becomes apparent at the right-hand tail of the distribution, where simple methods tend to simulate much greater increases (up to double the extreme heat days, for some locations) than more complex downscaling methods.;I conclude by discussing how a standardized evaluation framework may advance our understanding of regional climate impact studies in understanding biases and limitations in results, as well as providing critical input into the selection of downscaling methods for future assessments. Given the potential exhibited by this initial test, I explore how this evaluation framework could be expanded in the future to make it even more useful: to the regional scale, for example, by including tests for spatial correlations and forcing relationships; or across variables, to capture interactions directly relevant to impact studies, such as heat waves (a function of temperature and humidity, affecting human health, energy demand, and agriculture) or snow amounts (a function of precipitation and temperature, affecting infrastructure and ecosystems); or to evaluate a broader selection of climate variables, downscaling methods, and predictor fields.
机译:区域气候影响评估需要高分辨率的预测,以解决改变全球规模强迫影响的局部因素。为了产生这些预测,通常使用各种统计和动态技术来缩小全球气候模型模拟的规模。尽管缩减规模在区域评估中起着至关重要的作用,但是没有评估各种缩减方法的标准方法。因此,影响社区通常很少意识到与缩减规模预测相关的局限性和不确定性。为了建立评估和比较缩减规模方法的标准化框架,我首先确定与影响分析直接相关的分布的三个主要特征,这些特征可用于评估模拟变量,例如给定位置的温度或降水量:(1)年度,季节性和每月平均值; (2)阈值,极值和累积量,例如24h降水或度日; (3)持续性,反映了多日事件,例如热浪,寒潮和潮湿时段。在对文献进行调查并征求专家意见的基础上,我选择了一组十种统计测试来评估这些特征,包括误差,技能和相关性的度量。我将这个框架应用于评估四种降尺度方法的技能,从简单的增量方法到复杂的异步分位数回归,来模拟北美20个站点的每日温度。相同的全局模型字段会强制每种缩减方法,并且每个位置的历史观测记录按年份随机分为两个相等的部分,从而每种统计方法都将在一组历史观测值上进行训练,并在一​​组完全独立的观测值上进行评估。在历史评估期内计算相对于观测值的偏差,以及对未来的预测之间的差异。该框架在以下广泛的降尺度方法和位置中的成功应用在于:(1)所使用的降尺度方法被确定为决定数据质量的重要因素比台站位置或GCM更重要; (2)缩减方法之间的关键差异显而易见。对于关注变量的总体分布的测试,除偏差校正外,所有方法在模拟观测到的气候方面都比较成功,这表明,如果影响对均值变化最敏感,那么即使是相对简单的降尺度方法(如“三角洲”)也可以。大大改善了当地气候的模拟。但是,对于专注于分布尾部的测试,在基于简单和基于分位数的降尺度方法之间确实会出现差异。具体而言,后者似乎对位置不太敏感,并且能够更稳定地再现观测到的气候。根据未来的预测,降尺度方法之间最显着的差异会在分布的右尾变得明显,其中简单的方法往往比复杂的方法模拟出更大的增长(在某些地方,极端高温天数最多翻一番)。最后,我将讨论标准化的评估框架如何在理解结果的偏差和局限性以及为选择未来评估的缩减方法时提供重要的投入,从而提高我们对区域气候影响研究的理解。考虑到该初始测试所展现的潜力,我探索了如何在将来扩展此评估框架,使其更加有用:例如,通过包括空间相关性和强迫关系的测试,可以扩展到区域范围。或跨变量,以捕获与影响研究直接相关的相互作用,例如热浪(温度和湿度的函数,影响人类健康,能源需求和农业)或积雪量(降水和温度的函数,影响基础设施和生态系统) );或评估更广泛的气候变量选择,降尺度方法和预测变量字段。

著录项

  • 作者

    Hayhoe, Katharine Anne.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Atmospheric Sciences.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号