首页> 外文学位 >Reconstruction Algorithms for Novel Joint Imaging Techniques in PET
【24h】

Reconstruction Algorithms for Novel Joint Imaging Techniques in PET

机译:PET中新型联合成像技术的重建算法

获取原文
获取原文并翻译 | 示例

摘要

Positron emission tomography (PET) is an important functional in vivo imaging modality with many clinical applications. Its enormously wide range of applications has made both research and industry combine it with other imaging modalities such as X-ray computed tomography (CT) or magnetic resonance imaging (MRI). The general purpose of this work is to study two cases in PET where the goal is to perform image reconstruction jointly on two data types.;The first case is the Beta-Gamma image reconstruction. Positron emitting isotopes, such as 11C, 13N, and 18F, can be used to label molecules, and tracers, such as 11CO 2, are delivered to plants to study their biological processes, particularly metabolism and photosynthesis, which may contribute to the development of plants that have higher yield of crops and biomass. Measurements and resulting images from PET scanners are not quantitative in young plant structures or in plant leaves due to low positron annihilation in thin objects. To address this problem we have designed, assembled, modeled, and tested a nuclear imaging system (Simultaneous Beta-Gamma Imager). The imager can simultaneously detect positrons (beta+) and coincidence-gamma rays (gamma). The imaging system employs two planar detectors; one is a regular gamma detector which has a LYSO crystal array, and the other is a phoswich detector which has an additional BC-404 plastic scintillator for beta detection. A forward model for positrons is proposed along with a joint image reconstruction formulation to utilize the beta and coincidence-gamma measurements for estimating radioactivity distribution in plant leaves. The joint reconstruction algorithm first reconstructs the beta and gamma images independently to estimate the thickness component of the beta forward model, and then jointly estimates the radioactivity distribution in the object. We have validated the physics model and the reconstruction framework through a phantom imaging study and imaging a tomato leaf that has absorbed 11CO2. The results demonstrate that the simultaneously acquired beta and coincidence-gamma data, combined with our proposed joint reconstruction algorithm, improved the quantitative accuracy of estimating radioactivity distribution in thin objects such as leaves. We used the Structural Similarity (SSIM) index for comparing the leaf images from the Simultaneous Beta-Gamma Imager with the ground truth image. The jointly reconstructed images yield SSIM indices of 0.69 and 0.63, whereas the separately reconstructed beta alone and gamma alone images had indices of 0.33 and 0.52, respectively.;The second case is the virtual-pinhole PET technology, which has shown that higher resolution and contrast recovery can be gained by adding a high resolution PET insert with smaller crystals to a conventional PET scanner. Such enhancements are obtained when the insert is placed in proximity of the region of interest (ROI) and in coincidence with the conventional PET scanner. Intuitively, the insert may be positioned within the scanner's axial field-of-view (FOV) and radially closer to the ROI than the scanner's ring. One of the complicating factors of this design is the insert's blocking the scanner's lines-of-response (LORs). Such data may be compensated through attenuation and scatter correction in image reconstruction. However, a potential solution is to place the insert outside of the scanner's axial FOV and to move the body to be in proximity of the insert. We call this imaging strategy the surveillance mode. As the main focus of this work, we have developed an image reconstruction framework for the surveillance mode imaging. The preliminary results show improvement in spatial resolution and contrast recovery. Any improvement in contrast recovery should result in enhancement in tumor detectability, which will be of high clinical significance.
机译:正电子发射断层扫描(PET)是一种重要的功能体内成像方法,具有许多临床应用。它的广泛应用使研究和工业都将其与其他成像方式(例如X射线计算机断层扫描(CT)或磁共振成像(MRI))相结合。这项工作的总体目的是研究PET中的两种情况,目标是在两种数据类型上共同执行图像重建。第一种情况是Beta-Gamma图像重建。正电子发射同位素(例如11C,13N和18F)可用于标记分子,示踪剂(例如11CO 2)被输送至植物以研究其生物学过程,尤其是代谢和光合作用,这可能有助于植物的发育。作物和生物量较高的植物。由于薄物体中的正电子low灭率低,在年轻的植物结构或植物叶片中,PET扫描仪的测量结果图像无法定量。为了解决这个问题,我们设计,组装,建模和测试了核成像系统(同步Beta-Gamma成像仪)。成像仪可以同时检测正电子(beta +)和巧合伽玛射线(gamma)。该成像系统采用两个平面检测器。一个是具有LYSO晶体阵列的常规伽马探测器,另一种是具有额外的BC-404塑料闪烁体用于β检测的荧光检测器。提出了正电子的正向模型以及联合图像重建公式,以利用β和重合伽玛测量来估计植物叶片中的放射性分布。联合重建算法首先独立地重建beta和gamma图像,以估计beta正向模型的厚度分量,然后共同估计对象中的放射性分布。我们已经通过幻像成像研究和对吸收了11CO2的番茄叶片进行成像,验证了物理模型和重建框架。结果表明,同时获取的beta和巧合伽马数据,与我们提出的联合重建算法相结合,提高了估计薄物体(如树叶)中放射性分布的定量准确性。我们使用结构相似性(SSIM)索引将来自同时Beta-Gamma成像仪的叶片图像与地面真实图像进行比较。联合重建的图像的SSIM指数分别为0.69和0.63,而单独重建的beta图像和gamma单独图像的索引分别为0.33和0.52。第二种情况是虚拟针孔PET技术,它显示了更高的分辨率和分辨率。通过向传统的PET扫描仪中添加具有较小晶体的高分辨率PET插入物,可以实现对比度恢复。当将插入物放置在感兴趣区域(ROI)附近并且与常规PET扫描仪一致时,可以获得这种增强效果。直观地,插入物可以位于扫描仪的轴向视场(FOV)内,并且在径向上比扫描仪的环更靠近ROI。这种设计的复杂因素之一是插入物挡住了扫描仪的响应线(LOR)。这样的数据可以通过图像重建中的衰减和散射校正来补偿。但是,潜在的解决方案是将插件放置在扫描仪轴向FOV的外部,并使主体移动到插件附近。我们称这种成像策略为监视模式。作为这项工作的主要重点,我们开发了用于监视模式成像的图像重建框架。初步结果显示空间分辨率和对比度恢复得到改善。造影剂恢复的任何改善应导致肿瘤可检测性的增强,这将具有高度的临床意义。

著录项

  • 作者

    Ranjbar, Homayoon.;

  • 作者单位

    Washington University in St. Louis.;

  • 授予单位 Washington University in St. Louis.;
  • 学科 Electrical engineering.;Medical imaging.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号