首页> 外文学位 >Efficient VLSI Implementation of Arithmetic Units and Logic Circuits
【24h】

Efficient VLSI Implementation of Arithmetic Units and Logic Circuits

机译:算术单元和逻辑电路的高效VLSI实现

获取原文
获取原文并翻译 | 示例

摘要

Arithmetic units and logic circuits are critical components of any VLSI system. Thus realizing efficient arithmetic units and logic circuits is required for better performance of a data path unit and therefore microprocessor or digital signal processor (DSP).;Adders are basic building blocks of any processor or data path application. For the design of high performance processing units, high-speed adders with low power consumption is a requirement. Carry Select Adder (CSA) is known to be one of the fastest adders used in many data processing applications. This first contribution of the dissertation is the design of a new CSA architecture using Manchester carry chain (MCC) in multioutput domino CMOS logic. It employs a novel MCC blocks in a hierarchical approach in the design of the CSA. The proposed MCC block is also extended in designing a power-delay and area efficient Vedic multiplier based on "Urdhva-Tiryakbhyam". The simulation results shows that the proposed architecture achieves two fold advantages in terms of power-delay product (PDP) and hardware overhead.;Apart from adders and multipliers, counters also play a major role in a data path unit. Counters are basic building blocks in many VLSI applications such as timers, memories, ADCs/DACs, frequency dividers etc. It is observed that design of counters has power overhead because of requirement of high power consumption for the clock signal distribution and undesired activity of flip-flops due to presence of clocks. The second contribution of the dissertation is the power efficient design of synchronous counters that reduces the power consumption due to clock distribution for different flip-flops and offers high reliability. The simulation results shows that the proposed counter design has lower power requirement and power-area product than existing counter architectures.;Pipelines can be used for achieving high circuit operating speeds. However, as the operating frequency increases, the number of pipeline stages also increase linearly and so the memory elements. The third contribution of the dissertation is the dynamic memory-less pipeline design based on sinusoidal three-phase clocking scheme that reduces the power required by the clock and offers high circuit operating frequencies.;Finally, the dissertation presents a novel tool for Boolean-function realization with minimum number of transistor in series. This tool is based on applying a new functional decomposition algorithms to decompose the initial Boolean-function into a network of smaller sub-functions and subsequently generating the final circuit. The effectiveness of proposed technique is estimated using circuit level simulations as well as using automated tool. The number of levels required using proposed technique is reduced by an average of 70% compared to existing techniques.
机译:算术单元和逻辑电路是任何VLSI系统的关键组件。因此,需要高效的算术单元和逻辑电路,以实现数据路径单元以及微处理器或数字信号处理器(DSP)更好的性能。加法器是任何处理器或数据路径应用程序的基本构件。对于高性能处理单元的设计,需要低功耗的高速加法器。进位选择加法器(CSA)是许多数据处理应用程序中使用最快的加法器之一。论文的第一个贡献是在多输出多米诺CMOS逻辑中使用曼彻斯特进位链(MCC)设计了一种新的CSA体系结构。它在CSA的设计中采用了分层方法中的新型MCC块。拟议的MCC模块还扩展了基于“ Urdhva-Tiryakbhyam”的功率延迟和面积有效的吠陀乘法器的设计。仿真结果表明,所提出的体系结构在功耗延迟乘积(PDP)和硬件开销方面有两个方面的优势。除加法器和乘法器外,计数器在数据路径单元中也起着主要作用。在许多VLSI应用中,计数器是基本的构建模块,例如计时器,存储器,ADC / DAC,分频器等。可以看出,由于时钟信号分配的高功耗要求以及不希望的翻转活动,计数器的设计会产生功耗。触发器由于存在时钟。论文的第二个贡献是同步计数器的高能效设计,它减少了由于不同触发器的时钟分配而导致的功耗,并提供了高可靠性。仿真结果表明,与现有的计数器架构相比,所提出的计数器设计具有更低的功率要求和功率面积乘积。管道可用于实现较高的电路工作速度。然而,随着工作频率的增加,流水线级的数量也线性增加,因此存储元件也随之增加。论文的第三点贡献是基于正弦三相时钟方案的动态无存储器流水线设计,可减少时钟所需的功率并提供较高的电路工作频率。最后,本文提出了一种用于布尔函数的新型工具。用最少的晶体管串联实现。该工具基于应用新的功能分解算法,将初始布尔函数分解为较小子函数的网络,然后生成最终电路。使用电路级仿真以及使用自动化工具可以评估所提出技术的有效性。与现有技术相比,使用建议技术所需的级别数平均减少了70%。

著录项

  • 作者

    Katreepalli, Raghava.;

  • 作者单位

    Southern Illinois University at Carbondale.;

  • 授予单位 Southern Illinois University at Carbondale.;
  • 学科 Electrical engineering.;Computer engineering.;Engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号