首页> 外文学位 >Rigidity analysis for modeling protein motion.
【24h】

Rigidity analysis for modeling protein motion.

机译:用于建模蛋白质运动的刚度分析。

获取原文
获取原文并翻译 | 示例

摘要

Protein structure and motion plays an essential role in nearly all forms of life. Understanding both protein folding and protein conformational change can bring deeper insight to many biochemical processes and even into some devastating diseases thought to be the result of protein misfolding. Experimental methods are currently unable to capture detailed, large-scale motions. Traditional computational approaches (e.g., molecular dynamics and Monte Carlo simulations) are too expensive to simulate time periods long enough for anything but small peptide fragments.;This research aims to model such molecular movement using a motion framework originally developed for robotic applications called the Probabilistic Roadmap Method. The Probabilistic Roadmap Method builds a graph, or roadmap, to model the connectivity of the movable object's valid motion space. We previously applied this methodology to study protein folding and obtained promising results for several small proteins.;Here, we extend our existing protein folding framework to handle larger proteins and to study a broader range of motion problems. We present a methodology for incrementally constructing roadmaps until they satisfy a set of evaluation criteria. We show the generality of this scheme by providing evaluation criteria for two types of motion problems: protein folding and protein transitions. Incremental Map Generation eliminates the burden of selecting a sampling density which in practice is highly sensitive to the protein under study and difficult to select. We also generalize the roadmap construction process to be biased towards multiple conformations of interest thereby allowing it to model transitions, i.e., motions between multiple known conformations, instead of just folding to a single known conformation. We provide evidence that this generalized motion framework models large-scale conformational change more realistically than competing methods.;We use rigidity theory to increase the efficiency of roadmap construction by introducing a new sampling scheme and new distance metrics. It is only with these rigidity-based techniques that we were able to detect subtle folding differences between a set of structurally similar proteins. We also use it to study several problems related to protein motion including distinguishing secondary structure formation order, modeling hydrogen exchange, and folding core identification. We compare our results to both experimental data and other computational methods.
机译:蛋白质的结构和运动在几乎所有形式的生命中都起着至关重要的作用。对蛋白质折叠和蛋白质构象变化的了解可以为许多生化过程甚至对某些认为是蛋白质错误折叠的结果的破坏性疾病带来更深刻的了解。目前,实验方法无法捕获详细的大规模运动。传统的计算方法(例如分子动力学和蒙特卡罗模拟)太昂贵了,无法模拟除了小肽片段以外的任何时间都足够长的时间段;该研究旨在使用最初为机器人应用开发的运动框架(称为概率)来对此类分子运动进行建模路线图方法。概率路线图方法可构建图形或路线图,以对可移动对象的有效运动空间的连通性进行建模。我们以前曾使用这种方法研究蛋白质折叠,并获得了几种小蛋白质的有希望的结果。我们提出一种逐步构建路线图的方法,直到它们满足一组评估标准。我们通过提供两种运动问题的评估标准来显示该方案的一般性:蛋白质折叠和蛋白质过渡。增量图谱生成消除了选择采样密度的负担,而采样密度实际上对研究中的蛋白质高度敏感且难以选择。我们还概括了路线图构建过程,使其偏向于所关注的多个构象,从而使其能够对过渡进行建模,即对多个已知构象之间的运动进行建模,而不仅仅是折叠成单个已知构象。我们提供的证据表明,这种广义的运动框架比竞争方法更能真实地模拟大规模构象变化。;我们使用刚度理论,通过引入新的采样方案和新的距离度量来提高路线图的构建效率。只有借助这些基于刚度的技术,我们才能检测出一组结构相似的蛋白质之间的细微折叠差异。我们还使用它来研究与蛋白质运动有关的几个问题,包括区分二级结构形成顺序,模拟氢交换和折叠核识别。我们将我们的结果与实验数据和其他计算方法进行比较。

著录项

  • 作者

    Thomas, Shawna Lynn.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Chemistry Biochemistry.;Biology Bioinformatics.;Biophysics General.;Computer Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 217 p.
  • 总页数 217
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号