首页> 外文学位 >A Quantitative Study of Size Segregation in Free Surface Granular Flows
【24h】

A Quantitative Study of Size Segregation in Free Surface Granular Flows

机译:自由表面颗粒流中尺寸偏析的定量研究

获取原文
获取原文并翻译 | 示例

摘要

Granular solids consisting of various particle sizes exhibit the tendency to de-mix, or segregate, when caused to shear by external forces such as gravity. This well-known phenomenon is of special practical interest to many industries involved in the handling and transportation of bulk solids, where segregation can lead to adverse conditions for processing and quality control in various unit operations. A survey of the modern literature on segregation in granular materials yields a plenitude of qualitative and semi-quantitative methods for the prediction of segregation involving several granular flow configurations and particle types. Central to the challenge in modeling granular segregation is the lack of a generally applicable theory to accurately describe the kinematics in generic flowing geometries, as well as the lack of a first-principles based theory for describing size segregation in generic granular mixtures. However, in the past decade, continuum-based frameworks have re-emerged with the potential to quantitatively predict granular segregation when calibrated against a known velocity field, and supplied with material-dependent parameters describing local diffusion and particle-scale segregation. Hence, if the mean macroscopic velocity field can be found, either via experiments or simulations, the problem of describing segregation in an arbitrary geometry can be accurately modeled by means of an advection-diffusion equation, including a constitutive relation for particle segregation in the form of a drift flux. In practice, it is desired that the form of the segregation drift flux may be applicable to the broadest class of granular materials, with the fewest number of material-dependent parameters as possible.;This research study is largely motivated from a practical standpoint to provide a foundation for the quantitative analysis and prediction of segregation in industrial granular heap flows. To achieve this goal, Discrete Element Method (DEM) simulations are used extensively throughout this work as a computational tool to help inform a macroscale constitutive model of segregation. The quasi-two-dimensional (quasi-2D) bounded heap is first used as a candidate geometry to study segregation in bidisperse mixtures consisting of two particle sizes. A scaling relationship for the segregation length scale is found as a function of absolute particle size and particle size ratio--control parameters which are independent from the flow geometry. The characteristic segregation length scaling is demonstrated to have wide applicability across different system geometries and their corresponding velocity fields. In the first instance, it is shown that the bidisperse segregation parameter can be extended to describe segregation in size multi-disperse and polydisperse systems, within reasonable constraints on the flow. In the second instance, the segregation constitutive equation is applied to the problem of axisymmetric conical heap flow. Using azimuthally periodic 3D DEM simulations, comprehensive results for the free surface kinematics in the axisymmetric heap geometry are revealed to display fundamentally different scaling behaviors than that in the quasi-2D geometry, leading to a prediction of overall less segregation in conical heap flows. DEM simulations are validated using a small-angle, wedge-shaped bounded heap apparatus by comparing segregation profiles and the velocity field as measured at the flow boundaries. In an effort to understand the range of validity of the bidisperse linear segregation sub-model, an earlier proposed segregation sub-model is re-visited. It is demonstrated that this precursory, nonlinear segregation sub-model is capable of capturing two recently observed, independent phenomena: 1.) asymmetric segregation rates for granular mixtures with unequal volume concentrations, and 2.) a non-monotonic size-ratio dependence of maximum segregation rate.
机译:当由外力(例如重力)引起剪切时,由各种粒径组成的颗粒状固体表现出分解或分离的趋势。对于许多涉及散装固体的处理和运输的行业,这种众所周知的现象具有特殊的实际意义,在这些行业中,隔离可能导致各种单元操作中加工和质量控制的不利条件。对粒状材料中的偏析的现代文献进行的调查得出了用于预测偏析的大量定性和半定量方法,涉及几种颗粒流动形态和颗粒类型。建模颗粒分离的挑战的核心是缺乏通用的理论来准确描述通用流动几何学中的运动学,以及缺乏基于第一原理的理论来描述通用颗粒混合物中的尺寸分离。然而,在过去的十年中,基于连续体的框架已经重新出现,当根据已知的速度场进行校准时,可以定量预测颗粒的偏析,并提供了描述局部扩散和颗粒尺度偏析的材料相关参数。因此,如果可以通过实验或模拟找到平均宏观速度场,则可以通过对流扩散方程精确地模拟描述任意几何形状中的偏析问题,该方程包括形式为颗粒偏析的本构关系漂移通量。在实践中,期望偏析漂移通量的形式可以适用于最广泛的粒状材料类别,并尽可能减少与材料有关的参数数量。这项研究主要是出于实践的考虑,以提供为工业颗粒堆流中的偏析进行定量分析和预测的基础。为了实现此目标,在整个工作中广泛使用离散元素方法(DEM)模拟作为一种计算工具,以帮助告知分离的宏观本构模型。准二维(准2D)有界堆首先用作候选几何体,以研究由两种粒径组成的双分散混合物中的偏析。发现隔离长度标度的比例关系是绝对粒径和粒径比的函数-控制参数与流动几何形状无关。事实证明,特征隔离长度缩放在不同的系统几何形状及其对应的速度场中具有广泛的适用性。在第一种情况下,表明可以在对流量的合理约束下,扩展双分散分离参数来描述大小多分散和多分散系统中的分离。在第二种情况下,将分离本构方程应用于轴对称圆锥形堆流问题。使用方位角周期性3D DEM模拟,揭示了轴对称堆几何中自由表面运动学的综合结果显示出与准2D几何中根本不同的缩放行为,从而可以预测锥形堆流中总体上的偏析少。通过比较偏析轮廓和流边界处测得的速度场,使用小角度楔形有界堆装置验证了DEM模拟。为了理解双分散线性分离子模型的有效性范围,重新访问了较早提出的分离子模型。结果表明,该先验的非线性偏析子模型能够捕获两个最近观察到的独立现象:1.)体积浓度不相等的颗粒混合物的偏析速率不对称;以及2.)的非单调尺寸比依赖关系最大隔离率。

著录项

  • 作者

    Isner, Austin B.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 308 p.
  • 总页数 308
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号