首页> 外文学位 >Robustness Evaluation for Phylogenetic Reconstruction Methods and Evolutionary Models Reconstruction of Tumor Progression
【24h】

Robustness Evaluation for Phylogenetic Reconstruction Methods and Evolutionary Models Reconstruction of Tumor Progression

机译:系统发育重建方法的鲁棒性评估和肿瘤进展的进化模型重建

获取原文
获取原文并翻译 | 示例

摘要

Over millions of year of evolutionary history, the order and content of the genomes got changed by rearrangements, duplications and losses. There is always a consistent passion to find out what happened and what can happen in the evolutionary process. Due to the great development of various technology, the information about genomes is exponentially increasing, which make it possible figure the problem out. The problem has been shown so interesting that a great number of algorithms have been developed rigorously over the past decades in attempts to tackle these problems following different kind of principles. However, difficulties and limits in performance and capacity, and also low consistency largely prevent us from confidently statement that the problem is solved. To know the detailed evolutionary history, we need to infer the phylogeny of the evolutionary history (Big Phylogeny Problem) and also infer the internal nodes information (Small Phylogeny Problem). The work presented in this thesis focuses on assessing methods designed for attacking Small Phylogeny Problem and algorithms and models design for genome evolution history inference from FISH data for cancer data. During the recent decades, a number of evolutionary models and related algorithms have been designed to infer ancestral genome sequences or gene orders. Due to the difficulty of knowing the true scenario of the ancestral genomes, there must be some tools used to test the robustness of the adjacencies found by various methods. When it comes to methods for Big Phylogeny Problem, to test the confidence rate of the inferred branches, previous work has tested bootstrapping, jackknifing, and isolating and found them good resampling tools to corresponding phylogenetic inference methods. However, till now there is still no system work done to try and tackle this problem for small phylogeny. We tested the earlier resampling schemes and a new method inversion on different ancestral genome reconstruction methods and showed different resampling methods are appropriate for their corresponding methods.;Cancer is famous for its heterogeneity, which is developed by an evolutionary process driven by mutations in tumor cells. Rapid, simultaneous linear and branching evolution has been observed and analyzed by earlier research. Such process can be modeled by a phylogenetic tree using different methods. Previous phylogenetic research used various kinds of dataset, such as FISH data, genome sequence, and gene order. FISH data is quite clean for the reason that it comes form single cells and shown to be enough to infer evolutionary process for cancer development. RSMT was shown to be a good model for phylogenetic analysis by using FISH cell count pattern data, but it need efficient heuristics because it is a NP-hard problem. To attack this problem, we proposed an iterative approach to approximate solutions to the steiner tree in the small phylogeny tree. It is shown to give better results comparing to earlier method on both real and simulation data.;In this thesis, we continued the investigation on designing new method to better approximate evolutionary process of tumor and applying our method to other kinds of data such as information using high-throughput technology. Our thesis work can be divided into two parts. First, we designed new algorithms which can give the same parsimony tree as exact method in most situation and modified it to be a general phylogeny building tool. Second, we applied our methods to different kinds data such as copy number variation information inferred form next generation sequencing technology and predict key changes during evolution.
机译:在数百万年的进化历史中,基因组的顺序和内容因重排,重复和丢失而发生了变化。人们总是热衷于寻找进化过程中发生了什么以及可能发生什么。由于各种技术的飞速发展,有关基因组的信息呈指数增长,这使解决这一问题成为可能。事实证明,这个问题非常有趣,以至于在过去的几十年中,人们已经严格开发了许多算法,试图按照不同的原理来解决这些问题。但是,性能和容量上的困难和局限性以及较低的一致性在很大程度上阻止了我们自信地声明问题已解决。要了解详细的进化史,我们需要推断进化史的系统发育史(大系统发育问题),并推断内部结点信息(小型系统发育问题)。本文提出的工作重点是针对攻击小系统发育问题的评估方法以及从FISH数据推断癌症数据的基因组进化历史的算法和模型设计。在最近的几十年中,已经设计了许多进化模型和相关算法来推断祖先的基因组序列或基因顺序。由于难以了解祖先基因组的真实情况,必须使用一些工具来测试通过各种方法发现的邻接关系的鲁棒性。当谈到大系统发育问题的方法时,为了测试推断出的分支的置信度,以前的工作已经测试了自举,截断和分离,并发现它们是对应的系统发育推断方法的良好重采样工具。但是,到目前为止,仍然没有系统工作来尝试解决小系统发育问题。我们测试了较早的重采样方案和针对不同祖先基因组重建方法的新方法反演,并显示了不同的重采样方法适用于其相应方法。;癌症以其异质性而闻名,它是由肿瘤细胞突变驱动的进化过程发展而来的。早期研究已经观察到并分析了快速,同时的线性和分支演化。可以使用不同的方法通过系统发育树对此类过程进行建模。先前的系统发育研究使用了各种数据集,例如FISH数据,基因组序列和基因顺序。 FISH数据非常干净,原因是它来自单个细胞,并且显示出足以推断出癌症发展的进化过程。通过使用FISH细胞计数模式数据,RSMT被证明是系统发育分析的良好模型,但是由于它是一个NP难题,因此它需要有效的启发式方法。为了解决这个问题,我们提出了一种迭代方法来对小系统树中的斯坦纳树进行近似解。与真实数据和模拟数据相比,该方法显示出更好的结果。;本文继续研究设计新方法,以更好地近似肿瘤的演化过程,并将该方法应用于信息等其他类型的数据。使用高通量技术。我们的论文工作可以分为两个部分。首先,我们设计了可以在大多数情况下提供与精确方法相同的简约树的新算法,并将其修改为通用的系统发育构建工具。其次,我们将我们的方法应用于不同种类的数据,例如通过下一代测序技术推断出的拷贝数变异信息,并预测进化过程中的关键变化。

著录项

  • 作者

    Zhou, Jun.;

  • 作者单位

    University of South Carolina.;

  • 授予单位 University of South Carolina.;
  • 学科 Computer science.;Bioinformatics.;Oncology.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:47

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号