首页> 外文学位 >New Methods for Design of Full- and Reduced-Order Observers and Observer-Based Controllers for Systems with Slow and Fast Modes
【24h】

New Methods for Design of Full- and Reduced-Order Observers and Observer-Based Controllers for Systems with Slow and Fast Modes

机译:用于慢速和快速模式的系统的全序和降阶观测器和基于观测器的控制器设计的新方法

获取原文
获取原文并翻译 | 示例

摘要

This dissertation addresses the design of observer and observer-based controllers for singularly perturbed linear systems. To that end, we present an algorithm for the recursive solution of the singularly perturbed algebraic Sylvester equation. Due to the presence of a small singular perturbation parameter that indicates separation of the system variables into slow and fast, the corresponding algebraic Sylvester equation is numerically ill-conditioned. The observer driven controller design of singularly perturbed linear systems with the observer design done using the algebraic Sylvester equation is extremely ill-conditioned since the observer has to be much faster than the feedback system. The proposed method for the recursive reduced-order solution of the algebraic Sylvester equations removes ill-conditioning and iteratively obtains the solution in terms of four reduced-order numerically well-conditioned algebraic Sylvester equations corresponding to slow and fast variables. The convergence rate of the proposed algorithm is O(epsilon), where is a small positive singular perturbation parameter.;The new design technique for full-order Luenberger observers for systems with slow and fast modes is presented. The existing methods are able to design independent slow and fast observers with O(epsilon) accuracy only, where epsilon is a small positive singular perturbation parameter. In this dissertation, the design of independent slow and fast reduced-order observers was performed with the exact accuracy. The results obtained are extended to the design of corresponding observer driven controllers. The design allows complete time-scale separation for both the observer and controller through the complete and exact decomposition into slow and fast time scale problems. This method reduces both off-line and on-line computations. The effectiveness of the new methods is demonstrated through both theoretical and simulation results.;The results obtained for the full-order observer of singularly perturbed linear systems are extended to design of reduced-order observers (using both the Sylvester equation and Luenberger observer formulations) and the design of corresponding controllers for singularly perturbed systems. In such design additional computational advantages are achieved due to the use of the reduced order observers. Several cases of reduced-order observer designs are considered depending on the measured state space variables: only all slow variables are measured, only all fast variables are measured, some combinations of the slow and fast variables are measured.
机译:本文针对奇摄动线性系统,设计了基于观测器和基于观测器的控制器的设计。为此,我们提出了一种奇异摄动代数Sylvester方程的递归解算法。由于存在一个小的奇异摄动参数,该参数指示将系统变量分为慢速变量和快速变量,因此相应的代数Sylvester方程在数值上是不适的。由奇异摄动线性系统的观察者驱动的控制器设计,以及使用代数Sylvester方程完成的观察者设计,是极其恶劣的条件,因为观察者必须比反馈系统快得多。拟议的代数Sylvester方程递归降阶解的方法消除了病态,并根据四个分别对应于慢速变量和快速变量的数字化条件良好的代数Sylvester方程迭代求解。该算法的收敛速度为O(ε),其中是一个小的正奇异摄动参数。提出了一种用于慢速和快模系统的全阶Luenberger观测器的新设计技术。现有的方法仅能够以O(ε)精度设计独立的慢速和快速观察者,其中epsilon是小的正奇异摄动参数。本文以精确的精度设计了独立的慢速和快速降阶观测器。获得的结果被扩展到相应的观察者驱动的控制器的设计。该设计通过将完整而精确的分解分解为慢速和快速时标问题,可以实现观察者和控制器的完全时标分离。这种方法减少了离线和在线计算。理论和仿真结果都证明了新方法的有效性。奇异摄动线性系统全阶观测器获得的结果扩展到降阶观测器的设计(同时使用Sylvester方程和Luenberger观测器公式)以及用于奇摄动系统的相应控制器的设计。在这种设计中,由于使用了降阶观测器,因此获得了额外的计算优势。根据测得的状态空间变量考虑了降阶观察者设计的几种情况:仅测量所有慢变量,仅测量所有快速变量,测量慢和快变量的某些组合。

著录项

  • 作者

    Yoo, Heonjong.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号