首页> 外文学位 >Transformation kinetics & magnetism of magnetite nanoparticles.
【24h】

Transformation kinetics & magnetism of magnetite nanoparticles.

机译:磁铁矿纳米粒子的转变动力学和磁性。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents the results of a study of the nucleation and growth kinetics and magnetic properties of iron-oxide based nanoparticles that are formed by crystallization of a Na-Ca borate amorphous precursor. In addition to the interesting phase transformation kinetics and concentration dependent growth phenomena observed in this system, it also provides an opportunity to study finite-size effects on the magnetic properties of single domain particles. The crystallization of iron oxide nanoparticles and the phase identity (magnetite or maghemite) upon heat treatment was investigated over a range of time, temperature, and redox conditions. X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron diffraction (ED) were used to structurally characterize the resulting nanoparticles. Magnetite formation was favored under more reducing conditions whereas maghemite was formed under more oxidizing conditions. Under all conditions investigated, the particle size fell in the narrow range of about 2.5 to 4.5 nm and showed no evidence of further growth with time. This is believed to result from the increased viscosity in the iron-depleted diffusion field surrounding each particle. The magnetic properties were characterized using a superconducting quantum interference device (SQUID) and Mossbauer spectrometer (MS). Magnetization measurements were made from room temperature down to ∼10 K under field-cooled (FC) and zero-field-cooled (ZFC) conditions. The average blocking temperature obtained from these measurements is generally consistent with the measured particle size for reasonable values of the anisotropy constant. Unlike maghemite, bulk magnetite exhibits a metal-insulator transition, first reported by Verwey in 1939. The effect was attributed by Verwey and others to a charge-ordering transition. However, very recent data suggest that the Verwey transition is instead associated with a structural transition from inverse to normal spinel. In the present work, the magnetization data for samples produced under more reducing conditions show clear evidence of a Verwey transition in 4--4.5 nm magnetite nanoparticles. However, the transition is found to be shifted from the bulk value of ∼120 K to 85--95 K, which is attributed to finite-size effects.
机译:本论文提出了通过Na-Ca硼酸盐无定形前体结晶形成的铁氧化物基纳米颗粒的成核,生长动力学和磁性的研究结果。除了在该系统中观察到有趣的相变动力学和浓度依赖性生长现象外,它还提供了一个机会来研究对单畴粒子的磁性能的有限尺寸效应。在一定的时间,温度和氧化还原条件下,研究了热处理时氧化铁纳米颗粒的结晶和相身份(磁铁矿或磁铁矿)。使用X射线衍射(XRD),透射电子显微镜(TEM)和电子衍射(ED)对所得纳米颗粒进行结构表征。在更多还原条件下有利于磁铁矿的形成,而在更多氧化条件下有利于磁铁矿的形成。在所研究的所有条件下,粒度均落在约2.5至4.5 nm的狭窄范围内,并且没有显示出随时间进一步增长的迹象。据信这是由于围绕每个颗粒的贫铁扩散场中粘度增加所致。使用超导量子干涉仪(SQUID)和Mossbauer光谱仪(MS)表征了磁性。磁化测量是在室温(FC)和零磁场(ZFC)条件下从室温降至约10K。对于各向异性常数的合理值,从这些测量获得的平均粘连温度通常与测得的粒度一致。与磁铁矿不同,块状磁铁矿表现出金属-绝缘体转变,这是Verwey于1939年首次报道的。这种效应是Verwey和其他人将其归因于电荷有序转变。但是,最近的数据表明,Verwey转变与从反尖晶石到正常尖晶石的结构转变有关。在目前的工作中,在更多还原条件下生产的样品的磁化数据清楚表明存在4--4.5 nm磁铁矿纳米颗粒中的Verwey跃迁。但是,发现过渡从约120 K的整体值转移到85--95 K,这归因于有限尺寸效应。

著录项

  • 作者单位

    The Catholic University of America.;

  • 授予单位 The Catholic University of America.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号