首页> 外文学位 >MEMS for Tunable Photonic Metamaterial Applications
【24h】

MEMS for Tunable Photonic Metamaterial Applications

机译:用于可调谐光子超材料应用的MEMS

获取原文
获取原文并翻译 | 示例

摘要

Photonic metamaterials are materials whose optical properties are derived from artificially-structured sub-wavelength unit cells, rather than from the bulk properties of the constituent materials. Examples of metamaterials include plasmonic materials, negative index materials, and electromagnetic cloaks. While advances in simulation tools and nanofabrication methods have allowed this field to grow over the past several decades, many challenges still exist. This thesis addresses two of these challenges: fabrication of photonic metamaterials with tunable responses and high-throughput nanofabrication methods for these materials.;The design, fabrication, and optical characterization of a microelectromechanical systems (MEMS) tunable plasmonic spectrometer are presented. An array of holes in a gold film, with plasmon resonance in the mid-infrared, is suspended above a gold reflector, forming a Fabry-Perot interferometer of tunable length. The spectra exhibit the convolution of extraordinary optical transmission through the holes and Fabry-Perot resonances. Using MEMS, the interferometer length is modulated from 1.7 mum to 21.67 mum , thereby tuning the free spectral range from about 2900 wavenumbers to 230.7 wavenumbers and shifting the reflection minima and maxima across the infrared. Due to its broad spectral tunability in the fingerprint region of the mid-infrared, this device shows promise as a tunable biological sensing device.;To address the issue of high-throughput, high-resolution fabrication of optical metamaterials, atomic calligraphy, a MEMS-based dynamic stencil lithography technique for resist-free fabrication of photonic metamaterials on unconventional substrates, has been developed. The MEMS consists of a moveable stencil, which can be actuated with nanometer precision using electrostatic comb drive actuators. A fabrication method and flip chip method have been developed, enabling evaporation of metals through the device handle for fabrication on an external substrate. While the MEMS can be used to fabricate over areas of approximately 100 square mum2, a piezoelectric step-and repeat system enables fabrication over cm length scales. Thus, this technique leverages the precision inherent to MEMS actuation, while enhancing nanofabrication thoughput. Fabricating metamaterials on new substrates will enable novel and tunable metamaterials. For example, by fabricating unit cells on a periodic auxetic mechanical scaffold, the optical properties can be tuned by straining the mechanical scaffold.
机译:光子超材料是指其光学特性源自人工构造的亚波长单位晶格,而不是源自构成材料的整体特性的材料。超材料的示例包括等离子体材料,负折射率材料和电磁披风。尽管仿真工具和纳米制造方法的进步使该领域在过去的几十年中得以发展,但仍然存在许多挑战。本论文解决了其中两个挑战:具有可调响应的光子超材料的制造以及针对这些材料的高通量纳米制造方法。提出了微机电系统(MEMS)可调等离子体光谱仪的设计,制造和光学特性。金膜中的一系列孔(在中红外具有等离激元共振)悬浮在金反射器上方,形成可调长度的Fabry-Perot干涉仪。光谱表现出通过孔的非凡光学传输和法布里-珀罗共振的卷积。使用MEMS,将干涉仪的长度从1.7微米调制为21.67微米,从而将自由光谱范围从大约2900个波数调整到230.7个波数,并使反射最小值和最大值在红外范围内移动。由于它在中红外的指纹区域具有广泛的光谱可调谐性,因此该器件有望成为一种可调谐的生物传感设备。解决光学超材料的高通量,高分辨率制造,原子书法,MEMS的问题的基于动态模板光刻技术,用于在非常规衬底上无抗蚀剂地制造光子超材料。 MEMS由可移动的模板组成,可使用静电梳状驱动致动器以纳米精度进行致动。已经开发了一种制造方法和倒装芯片方法,其使得能够通过器件手柄蒸发金属以在外部基板上制造。尽管可以使用MEMS来制造约100平方毫米2的面积,但压电式步进重复系统可以在厘米级的规模上制造。因此,该技术利用了MEMS驱动固有的精度,同时提高了纳米加工量。在新的基板上制造超材料将使新颖和可调的超材料成为可能。例如,通过在周期性的动力性机械支架上制造晶胞,可以通过使机械支架变形来调节光学性质。

著录项

  • 作者

    Stark, Thomas.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号