首页> 外文学位 >Adaptive multiscale meshfree method for solving the Schrodinger equation in quantum mechanics.
【24h】

Adaptive multiscale meshfree method for solving the Schrodinger equation in quantum mechanics.

机译:求解量子力学中薛定inger方程的自适应多尺度无网格方法。

获取原文
获取原文并翻译 | 示例

摘要

The first part of this work is devoted to the development of meshfree methods for solving the Schrodinger equation in quantum systems. Both weak form based approaches and a strong form based collocation method are proposed. We first introduce orbital and polynomial basis functions to the partition of unity for solving the Schrodinger equation under the weak form framework of HP-Clouds. An intrinsic enrichment of orbital function and extrinsic enrichment of monomial functions are introduced. For general quantum systems, such as quantum dots with arbitrary size and shape, analytical orbital functions are unavailable. We introduce radial basis function as the general non polynomial basis in the approximation for quantum computation. While radial basis function exhibits exponential convergence, this approximation suffers from the large condition numbers due to its nonlocal global approximation. The proposed reproducing kernel enriched radial basis function intends to combine the advantages of radial basis function and reproducing kernel approximation function to yield a local approximation that is more stable than that of RBF, while at the same time offering a higher rate of convergence than that of reproducing kernel approximation.; The second part of this work extends the proposed computational quantum mechanics methods to multiscale modeling of quantum-dot semiconductors and quantum-dot arrays based on asymptotic expansion. Proper coarse-fine scale coupling functions for electron energy and wave function are introduced and solved for obtaining the fine scale information of effective mass and confinement potential. Consequently, the homogenized effective mass and confinement potential are obtained using the scale coupling functions. An iterative multiscale method by introducing Rayleigh quotient that uses the solution of the first order asymptotic expansion as the initial guess is also introduced.
机译:这项工作的第一部分致力于开发无网格方法,以解决量子系统中的薛定inger方程。提出了基于弱形式的方法和基于强形式的配置方法。我们首先将轨道和多项式基函数引入到单位分区,以在HP-Clouds弱形式框架下求解Schrodinger方程。介绍了轨道函数的内在富集和单项函数的外在富集。对于一般的量子系统,例如具有任意大小和形状的量子点,解析轨道函数是不可用的。在量子计算的近似中,我们引入了径向基函数作为一般的非多项式基。尽管径向基函数表现出指数收敛性,但由于其非局部全局近似,因此此近似值受到条件数较大的影响。提出的再生核丰富的径向基函数旨在结合径向基函数和再生核逼近函数的优势,以产生比RBF更稳定的局部逼近,同时提供比RBF更高的收敛速度。复制核近似。这项工作的第二部分将所提出的计算量子力学方法扩展到基于渐近展开的量子点半导体和量子点阵列的多尺度建模。为获得有效质量和限制势的精细尺度信息,引入并求解了适当的电子能量和波动函数的粗-精细尺度耦合函数。因此,使用比例耦合函数可以获得均质的有效质量和限制电位。还介绍了一种通过引入瑞利商的迭代多尺度方法,该方法使用一阶渐近展开式的解作为初始猜测。

著录项

  • 作者

    Hu, Wei.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 218 p.
  • 总页数 218
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号