首页> 外文学位 >Advanced source/drain technologies for nanoscale CMOS.
【24h】

Advanced source/drain technologies for nanoscale CMOS.

机译:用于纳米级CMOS的先进源/漏技术。

获取原文
获取原文并翻译 | 示例

摘要

Transistor scaling has been the driving force for technology advancements in the semiconductor industry over the last few decades. In order to mitigate short channel effects, the gate-oxide thickness and source/drain junction depth have been scaled along with the gate length. Recently, however, gate-oxide thickness scaling has slowed, as evidenced by the fact that an equivalent oxide thickness (EOT) of ∼1 nm has been used for the past 2-3 generations of CMOS technology. Although significant progress has been made in the development of high-permittivity (high-kappa) gate-dielectric materials and metal gate technology in recent years, it will be difficult to scale EOT well below 1 nm. This makes junction-depth scaling even more pressing for continued transistor scaling. Furthermore, as the dimensions of MOSFETs are scaled down, the contact resistance of silicide-to-source/drain regions increasingly limits transistor performance. This is because the on-state resistance of a MOSFET drops with transistor scaling, whereas contact resistance increases with contact area scaling. Contact resistance increases exponentially with Schottky barrier height (SBH) of the silicide-to-semiconductor contact. Thus, lower values of SBH will be needed in order to achieve substantial performance improvements with transistor scaling in the future. In practice, fermi-level pinning makes it especially difficult to attain low values of SBH for metal (silicide) contact to n-type silicon. This dissertation addresses the aforementioned scaling challenges associated with the design of source/drain structures for sub-45 nm CMOS generations.;Firstly, the progress made towards the formation of ultra-shallow junctions with the help of advanced annealing techniques, low-energy implants, and GCIB doping is presented. The experimental results obtained with flash annealing indicate that it is possible to achieve sub-15 nm junctions with lower sheet resistance (∼1000 O/□), adequate for 32 nm CMOS technology.;Since high-kappa/metal-gate stacks are already used in the most advanced 45 nm CMOS technology today, it is important to assess the compatibility of flash annealing with high-kappa/metal-gate stacks. The process integration of high-kappa/metal-gate stacks with flash annealing is discussed next. It is shown that the flash annealing process has minimal effects on gate stack properties and is found to be compatible with the high-kappa/metal-gate stacks. However, it results in degraded interface quality which is improved by using a post-metallization anneal.;To reduce the effective SBH of silicide-to-semiconductor contact, various species (nitrogen, fluorine, sulfur and selenium) are studied. These species were implanted into the semiconductor, and then "piled up" at the silicide-semiconductor interface during the silicidation process. It is shown that significant SBH lowering (by as much as 0.37 eV) can be achieved on n-type silicon using nitrogen. The impact of this process on the properties of NiSi is assessed and the mechanism of SBH reduction is explained. Encouraging results are also obtained with sulfur and selenium, and a comparison of effective SBH reduction is made for all studied species.;Finally, material properties of nickel germanide formed on epi-Ge on Si substrate are studied to form low-resistance and thermally stable contact material for realizing highly-scaled high-performance technology based on Ge-channel MOSFETs.
机译:在过去的几十年中,晶体管缩放一直是半导体行业技术进步的驱动力。为了减轻短沟道效应,栅极氧化物厚度和源极/漏极结深度已与栅极长度一起缩放。然而,最近,栅极氧化物厚度的缩放速度已经减慢,这一事实可以证明,在过去的2-3代CMOS技术中,等效氧化物厚度(EOT)约为1 nm。尽管近年来在高介电常数(高kappa)栅极电介质材料和金属栅极技术的开发方面已经取得了重大进展,但很难将EOT缩放到1 nm以下。这使得结深度缩放对于继续进行晶体管缩放更加迫切。此外,随着MOSFET尺寸的缩小,硅化物至源极/漏极区域的接触电阻越来越限制晶体管的性能。这是因为MOSFET的导通状态电阻随晶体管缩放而降低,而接触电阻随接触面积缩放而增加。接触电阻随硅化物与半导体接触的肖特基势垒高度(SBH)呈指数增加。因此,将需要较低的SBH值,以便将来在晶体管缩放时实现实质性的性能改进。实际上,费米能级钉扎特别难于使金属(硅化物)与n型硅接触的SBH值较低。本论文解决了与亚45nm CMOS世代的源/漏结构设计相关的上述缩放挑战。首先,借助先进的退火技术,低能量注入,在形成超浅结方面取得了进展,并介绍了GCIB掺杂。通过快速退火获得的实验结果表明,可以用较低的薄层电阻(〜1000 O /平方)实现低于15 nm的结,足以满足32 nm CMOS技术的要求;因为具有高kappa /金属栅堆叠现已用于当今最先进的45 nm CMOS技术中,评估快速退火与高kappa /金属栅堆叠的兼容性非常重要。接下来讨论高κ/金属栅叠层与快速退火的工艺集成。结果表明,快速退火工艺对栅叠层性能的影响最小,并且发现与高κ/金属栅叠层兼容。但是,这会导致界面质量下降,这可以通过使用后金属化退火来改善。为了减少硅化物与半导体接触的有效SBH,研究了各种物质(氮,氟,硫和硒)。这些物质被注入到半导体中,然后在硅化过程中在硅化物-半导体界面处“堆积”。结果表明,使用氮气在n型硅上可以实现SBH的大幅降低(多达0.37 eV)。评估了该工艺对NiSi性能的影响,并解释了SBH还原的机理。用硫和硒也获得了令人鼓舞的结果,并且对所有被研究的物种进行了有效的SBH还原的比较。;最后,研究了在Si衬底上的epi-Ge上形成的锗化镍的材料特性,以形成低电阻且热稳定接触材料,用于实现基于Ge沟道MOSFET的大规模高性能技术。

著录项

  • 作者

    Kalra, Pankaj.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号