首页> 外文学位 >Modeling and direct numerical simulation of particle-laden turbulent flows.
【24h】

Modeling and direct numerical simulation of particle-laden turbulent flows.

机译:充满粒子的湍流的建模和直接数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

The objective of this study is to improve Eulerian-Eulerian models of particle-laden turbulent flow, especially the interphase TKE transfer term and the dissipation rate in Eulerian-Eulerian models. We begin by understanding the behavior of two existing models---one proposed by Simonin (1996b), and the other by Ahmadi (1989)---in the limiting case of statistically homogeneous particle-laden turbulent flow. The decay of particle-phase and fluid-phase turbulent kinetic energy (TKE) is compared with point-particle direct numerical simulation data. Even this simple flow poses a significant challenge to current models, which have difficulty in reproducing important physical phenomena such as the variation of turbulent kinetic energy decay with increasing particle Stokes number. The model for the interphase TKE transfer timescale is identified as one source of this difficulty. A new model for the interphase transfer timescale is proposed that accounts for the interaction of particles with a range of fluid turbulence scales. A new multiphase turbulence model---the Equilibration of Energy Model (EEM)---is proposed, which incorporates this multiscale interphase transfer timescale. The model for Reynolds stress in both fluid and particle phases is derived in this work. The new EEM model is validated in decaying homogeneous particle-laden turbulence, and in particle-laden homogeneous shear flow. The particle and fluid TKE evolution predicted by the EEM model correctly reproduce the trends with important non-dimensional parameters, such as particle Stokes number.;The interphase transfer of turbulent kinetic energy (TKE) is an important term that affects the evolution of TKE in fluid and particle phases in particle-laden turbulent flow. In this work, we show that the interphase TKE transfer terms must obey a mathematical constraint, which in the limiting case of statistically homogeneous flow with zero mean velocity in both phases, requires these terms be equal and opposite. In the single-point statistical approach called the two-fluid theory, the interphase TKE transfer terms are unclosed and need to be modeled. Multiphase turbulence models that satisfy this constraint of conservative interphase TKE transfer admit a term-by-term comparison with true direct numerical simulations (DNS) that enforce the exact velocity boundary condition on each particle's surface. Analysis of three models reveals that not all models satisfy the requirement of conservative interphase TKE transfer. DNS that invoke the point-particle assumption also do not obey this principle of conservative interphase TKE transfer, and this precludes comparison of model predictions of TKE budgets in each phase with point-particle DNS. This study motivates the development of multiphase turbulence models based on the insights revealed by this analysis, leading to a meaningful comparison of TKE budgets with true DNS.;The immersed boundary method has the ability to simulate the irregular shape objects on the uniform Cartesian grids. In this work, the true DNS using the immersed boundary method is developed, and the drag force coefficient obtained from DNS is verified with laminar flow past a stationary sphere and a single sphere in the homogeneous turbulence. However the memory requirement of the immersed boundary method is found to be quite high and the parallelization of the immersed boundary method is necessary. The idea of the domain decomposition is used to parallelize the numerical solver for the immersed boundary method in this work, and the performance is studied for the resolution of 512 x 256 x 256.;The parallel immersed boundary method is used to study the effects of particle clusters on fluid phase turbulence. This study is inspired by the experiments of Moran and Glicksman Moran and Glicksman (2003a), where the fluid phase fluctuations are found to be enhanced at the high particle concentration, where particle clusters usually form in the CFB. In the DNS study, we use two types of random particle configurations and study the fluid phase TKE in the fixed bed of spheres. The uniform random particle configuration is denoted as MHC and the one with clusters is denoted as GCG in this study. The DNS study shows that the fluid phase TKE is enhanced with GCG along the streamwise direction in the fixed bed. For both MHC and GCG, the fluid phase Reynolds stress is found to be anisotropic. The 2D energy spectra studies show that the energy of GCG at lower wavenumber kappa 10 is higher than that of MHC. The cutoff wavenumber corresponds to the cluster size estimated using the radius of gyration. After examining the dissipation, and interphase TKE transfer term in the transport equation for Reynolds stress, it is noted that the dissipation is reduced in the second half of the fixed bed for GCG. (Abstract shortened by UMI.)
机译:这项研究的目的是改善带有粒子的湍流的欧拉-欧拉模型,尤其是欧拉-欧拉模型中的相间TKE传递项和耗散率。我们首先了解在统计上均质的,充满粒子的湍流的极限情况下,两个现有模型的行为-一个是西蒙宁(1996b)提出的,另一个是艾哈迈迪(1989)提出的。将颗粒相和流体相湍动能(TKE)的衰减与点颗粒直接数值模拟数据进行了比较。即使是这种简单的流动,也对当前的模型提出了重大挑战,因为当前的模型很难重现重要的物理现象,例如随着粒子斯托克斯数的增加,湍动能衰减的变化。相间TKE传输时标的模型被确定为这一困难的来源之一。提出了一种新的相间转移时间尺度模型,该模型考虑了粒子与一系列流体湍流尺度之间的相互作用。提出了一种新的多相湍流模型-能量平衡模型(EEM)-,其中包含了该多尺度相间转移时间尺度。在这项工作中导出了流体和颗粒相中的雷诺应力模型。新的EEM模型在衰减的均质颗粒湍流和均质剪切流中得到了验证。用EEM模型预测的颗粒和流体TKE的演化正确地再现了具有重要的无量纲参数的趋势,如颗粒斯托克斯数。颗粒湍流中的流体相和颗粒相。在这项工作中,我们表明相间TKE传递项必须服从数学约束,在统计均质流的有限情况下,两相的平均速度均为零,要求这些项相等且相反。在称为双流体理论的单点统计方法中,相间TKE传递项未公开,需要建模。满足保守的相间TKE传递这一约束的多相湍流模型允许与真正的直接数值模拟(DNS)进行逐项比较,后者可以在每个粒子的表面上施加精确的速度边界条件。对三种模型的分析表明,并非所有模型都满足保守相间TKE转移的要求。引用点粒子假设的DNS也没有遵循保守的相间TKE传输的原理,这排除了将每个阶段TKE预算的模型预测与点粒子DNS进行比较的可能性。这项研究基于此分析得出的见解激发了多相湍流模型的发展,从而使TKE预算与真实DNS进行了有意义的比较。浸入边界方法具有在均匀笛卡尔网格上模拟不规则形状对象的能力。在这项工作中,开发了使用沉浸边界方法的真实DNS,并用层流流过固定球体和均匀湍流中的单个球体验证了从DNS获得的阻力系数。然而,发现浸入边界方法的存储需求非常高,并且浸入边界方法的并行化是必要的。本文采用域分解的思想将数值求解器并行化为沉浸边界方法,并研究了分辨率为512 x 256 x 256的性能。液相湍流中的粒子簇。这项研究的灵感来自Moran和Glicksman的实验Moran和Glicksman(2003a)的实验发现,在高颗粒浓度下,液相波动通常在CFB中形成,而在高颗粒浓度下,液相波动增加了。在DNS研究中,我们使用两种类型的随机粒子配置并研究球体固定床中的液相TKE。在这项研究中,均匀的随机粒子构型表示为MHC,而具有簇的构型表示为GCG。 DNS研究表明,GCG沿固定床中的流向增强了液相TKE。对于MHC和GCG而言,发现液相雷诺应力是各向异性的。二维能谱研究表明,低波数kappa <10时GCG的能量高于MHC。截止波数对应于使用回转半径估算的簇大小。在检查了雷诺应力的输运方程中的耗散和相间TKE传递项后,注意到对于GCG,固定床后半段的耗散减小了。 (摘要由UMI缩短。)

著录项

  • 作者

    Xu, Ying.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号