首页> 外文学位 >Meshless hemodynamics modeling and evolutionary shape optimization of bypass grafts anastomoses.
【24h】

Meshless hemodynamics modeling and evolutionary shape optimization of bypass grafts anastomoses.

机译:旁路移植吻合术的无网格血液动力学建模和形状优化。

获取原文
获取原文并翻译 | 示例

摘要

Objectives. The main objective of the current dissertation is to establish a formal shape optimization procedure for a given bypass grafts end-to-side distal anastomosis (ETSDA). The motivation behind this dissertation is that most of the previous ETSDA shape optimization research activities cited in the literature relied on direct optimization approaches that do not guaranty accurate optimization results. Three different ETSDA models are considered herein: The conventional, the Miller cuff, and the hood models.;Materials and Methods. The ETSDA shape optimization is driven by three computational objects: a localized collocation meshless method (LCMM) solver, an automated geometry pre-processor, and a genetic-algorithm-based optimizer. The usage of the LCMM solver is very convenient to set an autonomous optimization mechanism for the ETSDA models. The task of the automated pre-processor is to randomly distribute solution points in the ETSDA geometries. The task of the optimized is the adjust the ETSDA geometries based on mitigation of the abnormal hemodynamics parameters.;Results. The results reported in this dissertation entail the stabilization and validation of the LCMM solver in addition to the shape optimization of the considered ETSDA models. The LCMM stabilization results consists validating a custom-designed upwinding scheme on different one-dimensional and two-dimensional test cases. The LCMM validation is done for incompressible steady and unsteady flow applications in the ETSDA models. The ETSDA shape optimization include single-objective optimization results in steady flow situations and biobjective optimization results in pulsatile flow situations.;Conclusions. The LCMM solver provides verifiably accurate resolution of hemodynamics and is demonstrated to be third order accurate in a comparison to a benchmark analytical solution of the Navier-Stokes. The genetic-algorithm-based shape optimization approach proved to be very effective for the conventional and Miller cuff ETSDA models. The shape optimization results for those two models definitely suggest that the graft caliber should be maximized whereas the anastomotic angle and the cuff height (in the Miller cuff model) should be chosen following a compromise between the wall shear stress spatial and temporal gradients. The shape optimization of the hood ETSDA model did not prove to be advantageous, however it could be meaningful with the inclusion of the suture line cut length as an optimization parameter.
机译:目标。本文的主要目的是为给定的旁路移植术端到端远端吻合术(ETSDA)建立正式的形状优化程序。本文背后的动机是,文献中引用的大多数先前的ETSDA形状优化研究活动都依赖于不能保证准确优化结果的直接优化方法。本文考虑了三种不同的ETSDA模型:常规模型,米勒袖带模型和引擎盖模型。;材料和方法。 ETSDA形状优化由三个计算对象驱动:局部搭配无网格方法(LCMM)求解器,自动几何预处理器和基于遗传算法的优化器。使用LCMM求解器非常方便,可以为ETSDA模型设置自主优化机制。自动预处理器的任务是在ETSDA几何图形中随机分布求解点。优化的任务是基于缓解异常血液动力学参数来调整ETSDA几何形状。本论文报道的结果除了考虑了ETSDA模型的形状优化外,还需要对LCMM求解器进行稳定和验证。 LCMM稳定结果包括在不同的一维和二维测试用例上验证定制设计的迎风方案。对于ETSDA模型中不可压缩的稳态和非稳态流应用,已完成LCMM验证。 ETSDA形状优化包括稳态流动情况下的单目标优化结果和脉动流动情况下的双目标优化结果。 LCMM求解器可提供精确的血流动力学分辨率,并且与Navier-Stokes基准分析解决方案相比具有三阶精度。事实证明,基于遗传算法的形状优化方法对于常规模型和Miller袖带ETSDA模型非常有效。这两个模型的形状优化结果无疑表明,应最大程度地提高移植物的口径,而应在壁切应力的空间和时间梯度之间取得折中之后选择吻合角和袖带高度(在Miller袖带模型中)。发动机罩ETSDA模型的形状优化并没有证明是有利的,但是通过将缝合线切割长度作为优化参数,这可能是有意义的。

著录项

  • 作者

    El Zahab, Zaher.;

  • 作者单位

    University of Central Florida.;

  • 授予单位 University of Central Florida.;
  • 学科 Engineering Biomedical.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号