首页> 外文学位 >Multi-scale thermal and circuit analysis for nanometre-scale integrated circuits.
【24h】

Multi-scale thermal and circuit analysis for nanometre-scale integrated circuits.

机译:纳米级集成电路的多尺度热和电路分析。

获取原文
获取原文并翻译 | 示例

摘要

Chip temperature is increasing with continued technology scaling due to increased power density and decreased device feature sizes. Since temperature has significant impact on performance and reliability, accurate thermal and circuit analysis are of great importance. Due to the shrinking device feature size, effects occurring at the nanometre scale, such as ballistic transport of energy carriers and electron tunneling, have become increasingly important and must be considered. However, many existing thermal and circuit analysis methods are not able to consider these effects efficiently, if at all. This thesis presents methods for accurate and efficient multi-scale thermal and circuit analysis. For circuit analysis, the simulation of single-electron device circuits is specifically studied.;To target thermal analysis, in this work, ThermalScope, a multi-scale thermal analysis method for nanometre-scale IC design is developed. It unifies microscopic and macroscopic thermal physics modeling methods, i.e., the Boltzmann transport and Fourier modeling methods. Moreover, it supports adaptive multi-resolution modeling. Together, these ideas enable efficient and accurate characterization of nanometre-scale heat transport as well as chip--package level heat flow. ThermalScope is designed for full-chip thermal analysis of billion-transistor nanometre-scale IC designs, with accuracy at the scale of individual devices. ThermalScope has been implemented in software and used for full-chip thermal analysis and temperature-dependent leakage analysis of an IC design with more than 150 million transistors.;To target circuit analysis, in this work, SEMSIM, a multi-scale single-electron device simulator is developed with an adaptive simulation technique based on the Monte Carlo method. This technique significantly improves the time efficiency while maintaining accuracy for single-electron device and circuit simulation. It is shown that it is possible to reduce simulation time up to nearly 40 times and maintain an average propagation delay error of under 5% compared to a non-adaptive Monte Carlo method. This simulator has been used to handle large circuit benchmarks with more than 6000 junctions, showing efficiency comparable to SPICE, with much better accuracy. In addition, the simulator can characterize important secondary effects including cotunneling and Cooper pair tunneling, which are critical for device research.
机译:随着功率密度的增加和器件特征尺寸的减小,芯片温度随着技术的不断发展而不断提高。由于温度会对性能和可靠性产生重大影响,因此准确的热分析和电路分析非常重要。由于器件特征尺寸的缩小,在纳米尺度上发生的影响,例如能量载体的弹道传输和电子隧穿,变得越来越重要,必须予以考虑。但是,许多现有的热学和电路分析方法根本无法有效地考虑这些影响。本文提出了准确有效的多尺度热和电路分析方法。在电路分析中,专门研究了单电子器件电路的仿真。针对目标热分析,本工作开发了ThermalScope,一种用于纳米级IC设计的多尺度热分析方法。它统一了微观和宏观热物理建模方法,即玻尔兹曼输运和傅立叶建模方法。此外,它支持自适应多分辨率建模。这些想法共同实现了纳米级传热以及芯片级封装级热流的高效,准确表征。 ThermalScope专为十亿晶体管纳米级IC设计的全芯片热分析而设计,具有单个设备规模的精度。 ThermalScope已通过软件实现,可用于具有1.5亿个以上晶体管的IC设计的全芯片热分析和与温度相关的泄漏分析;要针对电路分析,在这项工作中,SEMSIM是一种多尺度单电子设备模拟器是使用基于Monte Carlo方法的自适应模拟技术开发的。这项技术显着提高了时间效率,同时保持了单电子器件和电路仿真的精度。结果表明,与非自适应蒙特卡洛方法相比,可以将仿真时间缩短近40倍,并且将平均传播延迟误差保持在5%以下。该模拟器已用于处理具有6000多个结的大型电路基准测试,显示出与SPICE相当的效率,并且精度更高。此外,仿真器还可以表征重要的次要影响,包括协同隧穿和库珀对隧道效应,这对于设备研究至关重要。

著录项

  • 作者

    Allec, Nicholas.;

  • 作者单位

    Queen's University (Canada).;

  • 授予单位 Queen's University (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2008
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号