首页> 外文学位 >The structural and functional role of the gamma-epsilon rotor in Escherichia coli FoF1 ATP synthase.
【24h】

The structural and functional role of the gamma-epsilon rotor in Escherichia coli FoF1 ATP synthase.

机译:γ-ε转子在大肠杆菌FoF1 ATP合酶中的结构和功能作用。

获取原文
获取原文并翻译 | 示例

摘要

The gamma-epsilon-c subunits of the Escherichia coli FOF1 ATP synthase make up the rotor assembly, which couples proton transport to ATP catalysis. Previous EPR and functional studies from our laboratory suggest that interactions in the gamma-epsilon and gamma- c interfaces play important roles in efficient coupling. To further investigate the structure and dynamics of the interface, we have used the site-directed spin labeling strategy of EPR spectroscopy to define the structure of epsilon subunit in the gamma-epsilon-c subunit interface. EPR spectra of isolated epsilon subunits with spin labels at single-cysteine substitutions from epsilonE29C to epsilonA44C show an alternating mobility indicating a beta-strand secondary structure. When bound to F1 complex, spectra of spin-labeled epsilonP40C-epsilonT43C show large decreases of mobility, which are likely due to tertiary contacts with the gamma subunit. The epsilonL42C mutant subunit binds to the F 1 complex with lower affinity indicating that the hydrophobic interaction contributes significant amount of binding energy in gamma-epsilon interface. The EPR spectra of spin labeled epsilon29, epsilon33, epsilon35, epsilon36, epsilon37 and epsilon39 subunit-F1 complexes demonstrate large mobility decreases when F1 is reconstituted with the membranous FO sector, suggesting that these residues directly interact with subunit c. Single-cysteine mutations introduced in the epsilon-c interface do not disrupt energy coupling between FO and F1, implying that the gamma-c interface is the main channel for the energy coupling mechanism and one role of epsilon is to strengthen the gamma-c interaction and coordinate conformations of gamma and c subunits for optimal coupling efficiency.;Deuterium-Hydrogen exchange and X-ray footprinting methods were used to explore the solvent-accessibility changes of the rotor and rotor-stator interface regions in the presence and absence of ATP. However, due to the problem of deuterium-back-exchange, solvent accessibility map of the gamma-epsilon rotor could not be established based on the deuterium-hydrogen exchange method. From X-ray footprinting analysis, the nucleotide-dependent changes of oxidative rates of gammaMet178 and betaMet379 suggest the possible important contacts between gamma and alpha3beta3 hexamer during rotation. Decreases of oxidative rates of epsilonMet15, epsilonMet49, and epsilonPhe61 in the presence of ATP provide evidence for the nucleotide-dependent movement of C-terminal helices of epsilon subunit.
机译:大肠杆菌FOF1 ATP合酶的γ-ε-c亚基组成了转子组件,该组件将质子运输耦合到ATP催化。我们实验室以前的EPR和功能研究表明,γ-ε和γ-c界面中的相互作用在有效偶联中起重要作用。为了进一步研究界面的结构和动力学,我们使用了EPR光谱的定点自旋标记策略来定义γ-ε-c亚基界面中ε亚基的结构。从epsilonE29C到epsilonA44C的单半胱氨酸取代处带有自旋标记的分离的epsilon亚基的EPR谱显示出交替的迁移率,指示β链二级结构。当与F1复合物结合时,自旋标记的epsilonP40C-epsilonT43C的光谱显示迁移率大大降低,这很可能是由于与γ亚基的三级接触。 epsilonL42C突变体亚基以较低的亲和力与F 1复合物结合,表明疏水相互作用在γ-ε界面中贡献了大量的结合能。自旋标记的epsilon29,epsilon33,epsilon35,epsilon36,epsilon37和epsilon39亚基-F1复合物的EPR谱显示,当F1与膜状FO区域重构时,迁移率会大大降低,表明这些残基直接与c亚基相互作用。 epsilon-c界面中引入的单半胱氨酸突变不会破坏FO和F1之间的能量耦合,这意味着γ-c界面是能量耦合机制的主要通道,而epsilon的作用之一是增强γ-c相互作用。 ;并利用γ-氢交换和X射线足迹法研究了存在和不存在ATP的情况下转子和转子-定子界面区域的溶剂可及性变化。然而,由于氘交换的问题,基于氘-氢交换方法无法建立γ-ε转子的溶剂可及性图。根据X射线足迹分析,γ-Met178和betaMet379氧化速率的核苷酸依赖性变化表明,在旋转过程中,γ和alpha3beta3六聚体之间可能存在重要的接触。在存在ATP的情况下epsilonMet15,epsilonMet49和epsilonPhe61的氧化速率降低,为epsilon亚基C末端螺旋的核苷酸依赖性运动提供了证据。

著录项

  • 作者

    Lin, Shin-Kai.;

  • 作者单位

    University of Virginia.;

  • 授予单位 University of Virginia.;
  • 学科 Biophysics General.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 249 p.
  • 总页数 249
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号