首页> 外文学位 >Neuron guidance by biomimetic topographical cues.
【24h】

Neuron guidance by biomimetic topographical cues.

机译:仿生地形线索的神经元指导。

获取原文
获取原文并翻译 | 示例

摘要

My graduate work examined the reaction of neuronal cells to the shape of their extracellular environment. Over the last century, many studies have confirmed that external topography has a profound influence on cellular behavior. Using geometric, rectangular repeating grooves with size ranges in the tens of micrometers, we were the first to describe "cellular bridging" in which a variety of anchorage-dependent cell types including primary rat and human cell cultures as well as a variety of immortal rat, mouse, and human cell lines extended from one plateau to an adjacent plateau of a multiple grooved substrate without underlying support. Extending our research to more complex shapes, we developed a platform technology based on a two-stage replica molding approach that is capable of reproducing adherent cellular shapes at a macro-, micro-, and nano-scale in various polymeric substrates and thus create cell-shaped polymeric surfaces. This allowed us to separate the presentation of cellular shape from cellular biochemistry and characterize cellular behavior in response to cellular shape in the absence of other heterogeneous cellular cues that are inherent to cell-cell interactions in co-cultures. Utilizing these novel materials, we were able to show that cellular topography is capable of enhancing adhesion, motility, and alignment in the absence of other directional cues. Pilot experiments with nerve guidance channels incorporating cell-shaped biomimetic topography showed increased cellular migration and outgrowth from dorsal root ganglion explants on surfaces with aligned biomimetic topography when compared to topographically homogeneous controls. The results of this research inform efforts at the basic science level by enabling the deconstruction of cellular environments beyond previous capabilities and quantifying the contribution of cellular and extracellular matrix shape to cellular behavior. These results also open new avenues to controlling cellular response to implant surfaces. Currently, these techniques and approaches are continued and expanded by my colleagues to encompass different organ systems such as the vascular system and the control of differentiation of stem cells by cellular topography.
机译:我的研究生工作检查了神经元细胞对细胞外环境形状的反应。在过去的一个世纪中,许多研究已经证实外部地形对细胞行为具有深远的影响。我们使用大小范围在数十微米的几何矩形重复槽,首次描述了“细胞桥联”,其中多种锚定依赖性细胞类型包括原代大鼠和人类细胞培养以及各种永生大鼠,小鼠和人细胞系从多沟底物的一个平台延伸到相邻平台,而没有下面的支撑。将我们的研究扩展到更复杂的形状,我们开发了一种基于两步复制成型方法的平台技术,该技术能够在各种聚合物基材中以宏观,微米和纳米尺度复制粘附的细胞形状,从而创造出细胞形的聚合物表面。这使我们能够将细胞形状的呈现与细胞生物化学分开,并在不存在共培养中细胞-细胞相互作用固有的其他异质细胞提示的情况下,表征细胞对细胞形状的响应行为。利用这些新颖的材料,我们能够证明细胞形貌能够在没有其他方向性提示的情况下增强粘附性,运动性和对齐性。结合细胞形仿生形貌的神经引导通道的试验实验表明,与同形的仿生形对照相比,具有对准的仿生形貌的表面上背根神经节外植体的细胞迁移和生长增加。这项研究的结果通过使细胞环境的破坏能力超出了先前的能力,并量化了细胞和细胞外基质形状对细胞行为的贡献,为基础科学领域的研究工作提供了参考。这些结果也为控制细胞对植入物表面的反应开辟了新途径。目前,这些技术和方法已由我的同事们继续和扩展,以涵盖不同的器官系统,例如血管系统和通过细胞形貌控制干细胞分化。

著录项

  • 作者

    Bruder, Jan M.;

  • 作者单位

    Brown University.;

  • 授予单位 Brown University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 325 p.
  • 总页数 325
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号