首页> 外文学位 >Novel conjugated materials via zirconocene coupling and palladium-catalyzed cross-coupling.
【24h】

Novel conjugated materials via zirconocene coupling and palladium-catalyzed cross-coupling.

机译:通过锆茂偶联和钯催化交叉偶联的新型共轭材料。

获取原文
获取原文并翻译 | 示例

摘要

Organic electronic materials are viable competitors for next-generation solar cells, display technology, and sensors. Progress in this field is driven by collaborative feedback between chemists, who make materials, and engineers, who optimize device performance. This dissertation focuses on two methods for synthesizing new conjugated materials: zirconocene coupling and palladium-catalyzed cross-coupling. Chapters 1 and 2 investigate the synthesis and reactivity of an electron-deficient building block for n-type organic semiconductors. Chapter 3 explores beta-directing groups for zirconocene coupling, while Chapter 4 describes the diastereoselective macrocyclization of 1,4-bis[(trimethylsilyl)ethynyl]acenes.;In Chapter 1, 9,10-dichlorooctafluoroanthracene is synthesized from commercially available tetrafluorophthalic acid by an optimized solution-phase route. Stirring 9,10-dichlorooctafluoroanthracene with phenylboronic acid under modified Suzuki-Miyaura coupling conditions generates octafluoro-9,10-diphenylanthracene in high yield. Cyclic voltammetry and X-ray crystallography indicate that octafluoro-9,10-diphenylanthracene has a stabilized LUMO energy level and extended pi stacking, which should lead to efficient electron transport in solid-state devices.;Further coupling chemistry with 9,10-dichlorooctafluoroanthracene is examined in Chapter 2. It reacts with aryl boronic acids and terminal alkynes under palladium-catalyzed cross-coupling conditions to afford 9,10-diaryloctafluoroanthracenes and 9,10-dialkynyloctafluoroanthracenes, respectively. Optical spectroscopy and cyclic voltammetry indicate that octafluoro-9,10-di(thiophen-2-yl)anthracene exhibits donor-acceptor character and a LUMO energy level of --3.27 eV relative to vacuum. X-ray crystallographic analysis of octafluoro-9,10-bis[(trimethylsilyl)ethynyl]anthracene reveals a solid-state structure that mimics the packing of columnar liquid crystals, with a pi stacking distance of 3.39 A between the octafluoroanthracene cores. In addition, octafluoro-9,10-bis(mesitylethynyl)anthracene displays a LUMO energy level of --3.50 eV, which approaches the value of --3.65 eV measured for perfluoropentacene, making 9,10-dialkynyloctafluoroanthracenes a promising new class of n-type organic semiconductors.;Chapter 3 investigates the zirconocene-mediated coupling of o-methyl-substituted (phenylethynyl)benzenes. Coupling of 1,3,5-trimethy1-2-(phenylethynyl)benzene and 1,3-dimethy1-2-(phenylethynyl)benzene is completely regioselective, giving the betabeta stereoisomer in excellent yield. The regioselectivity appears to be directed by steric bulk at the alkyne, as 1-methyl-2-(phenylethynyl)benzene affords 88% conversion to the betabeta product, while zirconocene coupling of 1,3-dimethy1-5-(phenylethynyl)benzene and 1-methyl-3-(phenylethynyl)benzene display no selectivity. Zirconocene coupling of the mesityl-containing alkyne, 1,3,5-trimethy1-2-(phenylethynyl)benzene, is readily reversible, and the zirconacyclopentadiene product undergoes substitution reactions with 3-hexyne and diphenylacetylene. Furthermore, the mesityl-substituted zirconacycle can be transformed into a butadiene or thiophene oxide by reaction with benzoic acid or sulfur dioxide, respectively. These conjugated units are difficult to synthesize by other methods, making the regioselective and reversible zirconocene-mediated coupling of mesityl-substituted alkynes a viable route to new materials.;Finally, Chapter 4 centers on the synthesis of novel macrocycles and cyclophanes. Although there are two possible diastereomeric products, zirconocene-mediated trimerization of 1,4-bis[(trimethylsilyl)ethynyl]acenes is stereoselective, generating only the energetically-favored "2 up, 1 down" isomer. Improved understanding of the factors governing stereoselective macrocyclizations will enable new supramolecular building blocks for a variety of applications.
机译:有机电子材料是下一代太阳能电池,显示技术和传感器的有力竞争者。该领域的进展是由制造材料的化学家与优化设备性能的工程师之间的协作反馈所推动的。本文主要研究两种新的共轭材料的合成方法:茂茂锆偶联和钯催化交叉偶联。第1章和第2章研究了用于n型有机半导体的缺电子结构单元的合成和反应性。第3章探讨了锆茂偶联的β导向基团,而第4章描述了1,4-双[(三甲基甲硅烷基)乙炔基]乙炔的非对映选择性大环化。在第1章中,由市场上可买到的四氟邻苯二酚通过合成9,10-二氯八氟蒽优化的解决方案阶段路线。在改良的Suzuki-Miyaura偶联条件下,将9,10-二氯八氟蒽与苯硼酸一起搅拌,可高产率地产生八氟-9,10-二苯基蒽。循环伏安法和X射线晶体学分析表明,八氟-9,10-二苯基蒽具有稳定的LUMO能级和扩展的pi堆积,这将导致固态器件中的有效电子传输。; 9,10-二氯八氟蒽的进一步偶联化学反应在第2章中进行了研究。它在钯催化的交叉偶联条件下与芳基硼酸和末端炔烃反应,分别制得9,10-二芳基氟蒽和9,10-二炔基氟蒽。光谱和循环伏安法表明八氟-9,10-二(噻吩-2-基)蒽具有供体-受体特征,相对于真空的LUMO能级为--3.27 eV。八氟-9,10-双[(三甲基甲硅烷基)乙炔基]蒽的X射线晶体学分析揭示了一种固态结构,该结构模仿了柱状液晶的堆积,八氟蒽芯之间的pi堆积距离为3.39A。此外,八氟-9,10-双(间乙炔基)蒽的LUMO能级为--3.50 eV,接近于全氟并五苯测定的--3.65 eV的值,这使9,10-对二炔基六氟蒽成为一种有前景的新型n型有机半导体。;第3章研究了锆茂茂介导的邻甲基取代的(苯乙炔基)苯的偶联。 1,3,5-三甲基1-2-(苯基乙炔基)苯与1,3-二甲基1-2-(苯基乙炔基)苯的结合具有完全的区域选择性,从而以极佳的收率得到β-β立体异构体。区域选择性似乎是由炔烃的空间体积决定的,因为1-甲基-2-(苯基乙炔基)苯可将88%的化合物转化为β-β产物,而1,3-二甲基1-5-(苯基乙炔基)苯的锆茂偶联和1-甲基-3-(苯基乙炔基)苯没有选择性。含1,3,5-三甲基1-2-(苯基乙炔基)苯的含1,3,5-炔基的锆茂系偶合是容易可逆的,并且氧化锆环戊二烯产物与3-己炔和二苯基乙炔进行取代反应。此外,通过分别与苯甲酸或二氧化硫反应,可以将异丁基取代的氧化锆环转化为丁二烯或噻吩氧化物。这些共轭单元很难通过其他方法合成,这使得区域选择性和可逆的锆茂介导的均三烯基取代的炔烃偶联成为新材料的可行途径。最后,第4章主要讨论新型大环和环烷的合成。尽管存在两种可能的非对映异构产物,但是锆茂介导的1,4-双[(三甲基甲硅烷基)乙炔基]乙炔的三聚是立体选择性的,仅产生在能量上有利的“ 2向上1向下”异构体。更好地理解控制立体选择性大环化的因素,将为各种应用提供新的超分子构件。

著录项

  • 作者

    Tannaci, John Frederick.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 90 p.
  • 总页数 90
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 有机化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号