首页> 外文学位 >Inferring mechanical resonances in micro- and nanocantilevers using the harmonic detection of resonance (HDR) method to develop a novel sensing platform.
【24h】

Inferring mechanical resonances in micro- and nanocantilevers using the harmonic detection of resonance (HDR) method to develop a novel sensing platform.

机译:使用共振谐波检测(HDR)方法推断微悬臂和纳米悬臂的机械共振,以开发新型传感平台。

获取原文
获取原文并翻译 | 示例

摘要

During the past two decades, advances in microelectromechanical systems (MEMS) have spurred efforts worldwide to develop sensing platforms based on smart microcantilevers. A microcantilever beam is one of the simplest MEMS structures which forms the basis for portable, fast and highly sensitive schemes that are capable of measuring small deflections in static or dynamic response due to changes in external parameters such as mass, pressure, charge, etc.;In this dissertation, I mainly focus on MEMS sensors with transducers in the form of microcantilevers. Variations in the microcantilever's response such as resonant frequency, amplitude, phase and quality factor when exposed to external stimuli are measured. Recently, we have developed a fully electrical sensing platform called the harmonic detection of resonance (HDR) method by which a silicon microcantilever (or a multiwalled carbon nanotube) can be electrically actuated and its resonance parameters electrically detected [4, 5] through capacitance changes. It is well known that a large interfering signal coming from the inherent parasitic capacitance in the circuit at the driving frequency O, is present in the platforms which use the capacitive readout method. However, we found that by driving the cantilever at O and detecting its response at higher harmonics of O, the parasitic capacitance can be avoided, facilitating the measurement of dynamic capacitance with high sensitivity in micro and nano-cantilevers [1, 2]. A significant part of this dissertation is devoted to the study of the nonlinear dynamics of microcantilevers under varying gas environments and pressures using HDR [3]. I also discuss the characteristics of an electrostatically driven microcantilever which exhibits Duffing-like behavior using HDR. The first experimental demonstration of its potential use as a highly sensitive sensing platform is discussed. [4]. We also discuss the behavior of an unfunctionalized microcantilever sensor which can be used for active sensing of gaseous species under ambient conditions. Our sensing platform measures the changes in the mechanical response (in amplitude and/or phase) of the vibrating microcantilever in air at its resonant frequency when exposed to several vapors and gases [5]. Finally I present the preliminary results on sensing toxic gases using functionalized microcantilevers.;In the final chapter, I present evidence for the fact that HDR method is scaleable and can be adapted for nanoscale cantilevers. In particular, I introduce the reader to bending modulus measurements of multiwalled carbon nanotubes performed in Prof. Rao's group. One of the key factors in these measurements is an accurate knowledge of density of carbon nanotubes. I provide in-depth discussion of the gradient sedimentation technique which enables one to measure the density of both single- and multi-walled carbon nanotubes.
机译:在过去的二十年中,微机电系统(MEMS)的进步刺激了全球范围内开发基于智能微悬臂梁的传感平台的努力。微悬臂梁是最简单的MEMS结构之一,它构成了便携式,快速和高灵敏度方案的基础,该方案能够测量由于外部参数(例如质量,压力,电荷等)的变化而导致的静态或动态响应中的小偏差。 ;在本文中,我主要研究具有微悬臂梁形式的换能器的MEMS传感器。当受到外部刺激时,测量微悬臂梁响应的变化,例如共振频率,幅度,相位和品质因数。最近,我们开发了一个全电感应平台,称为共振谐波检测(HDR)方法,通过该平台可以电动驱动硅微悬臂梁(或多壁碳纳米管),并通过电容变化来电气检测其共振参数[4,5] 。众所周知,在使用电容读出方法的平台中,存在来自驱动频率为O的电路中固有寄生电容的大干扰信号。但是,我们发现,通过在O处驱动悬臂并在O的高次谐波处检测其响应,可以避免寄生电容,从而有助于在微米和纳米悬臂中以高灵敏度测量动态电容[1、2]。本文的重要部分致力于使用HDR研究在不同气体环境和压力下微悬臂梁的非线性动力学[3]。我还将讨论使用HDR表现出类似Duffing行为的静电驱动微悬臂梁的特性。讨论了其潜在用途作为高灵敏度传感平台的首次实验演示。 [4]。我们还将讨论未功能化的微悬臂梁传感器的行为,该传感器可用于在环境条件下主动感应气态物质。当暴露于多种蒸气和气体中时,我们的传感平台可测量振动微悬臂梁在共振频率下的机械响应(幅度和/或相位)的变化[5]。最后,我介绍了使用功能化微悬臂梁感测有毒气体的初步结果。在最后一章中,我提供了以下事实的证据:HDR方法具有可扩展性并且可以适用于纳米级悬臂梁。特别是,我向读者介绍了饶教授小组中进行的多壁碳纳米管弯曲模量的测量。这些测量的关键因素之一是对碳纳米管密度的准确了解。我对梯度沉降技术进行了深入的讨论,该技术使人们能够测量单壁和多壁碳纳米管的密度。

著录项

  • 作者

    Keskar, Gayatri.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号