首页> 外文学位 >A molecular dynamics study of void initiation and growth in monocrystalline and nanocrystalline copper.
【24h】

A molecular dynamics study of void initiation and growth in monocrystalline and nanocrystalline copper.

机译:分子动力学研究单晶和纳米晶铜中空穴的引发和生长。

获取原文
获取原文并翻译 | 示例

摘要

MD simulations in monocrystalline and nanocrystalline copper were carried out with LAMMPS to reveal void growth mechanisms. The specimens were subjected to both tensile uniaxial and hydrostatic strains; the results confirm that the emission of (shear) loops is the primary mechanism of void growth. The expansion of the loops and their cross slip leads to the severely work hardened layer surrounding a growing void. Calculations were carried out on voids with different sizes, and a size dependence of the stress response to emitted dislocations was observed, in disagreement with the Gurson model [1] which is scale independent. The growth of voids simulated by MD is compared with the Cocks-Ashby constitutive model and significant agreement is found. The density of geometrically-necessary dislocations as a function of void size is calculated based on the emission of shear loops and their outward propagation. Calculations were also carried out for a void at the interface between two grains sharing a tilt boundary. The results show similar dislocation behaviors.;A code that uses Voronoi tessellation for constructing nanocrystalline structures was developed and used to prepare the structures for simulations. Nanocrystal simulations reveal grain sliding and grain rotation as the nanocrystal deformed. Voids were nucleated at grain junctions and grew to coalescence as dislocations accommodated the material transfer.;A code that can be used during post-processing to extract useful dislocation information from MD simulation data was partially developed and proved the feasibility of automatically analyzing dislocations.
机译:用LAMMPS对单晶和纳米晶铜进行了MD模拟,以揭示空洞生长的机理。试样都承受了单轴拉伸和静水应变。结果证实,(剪切)环的发射是空隙增长的主要机制。环的膨胀及其交叉滑移导致围绕不断增长的空隙的剧烈工作的硬化层。对具有不同尺寸的空隙进行了计算,并且观察到应力对所发射位错的尺寸依赖性,这与尺度无关的Gurson模型[1]不一致。将MD模拟的孔隙增长与Cocks-Ashby本构模型进行比较,发现存在显着一致性。几何必要位错的密度随空隙大小的变化是基于剪切环的发射及其向外传播来计算的。还对共享倾斜边界的两个晶粒之间的界面处的空隙进行了计算。结果显示出类似的位错行为。;开发了使用Voronoi棋盘格化构造纳米晶体结构的代码,并用于准备用于模拟的结构。纳米晶体模拟揭示了随着纳米晶体变形,晶粒滑动和晶粒旋转。空隙在位错处成核,并随着位错适应材料转移而发展为聚结。;部分开发了可在后处理期间从MD模拟数据中提取有用的位错信息的代码,证明了自动分析位错的可行性。

著录项

  • 作者

    Traiviratana, Sirirat.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:38:35

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号