首页> 外文学位 >Fabrication, functionalization and manipulation of magnetic nanowires for biological applications.
【24h】

Fabrication, functionalization and manipulation of magnetic nanowires for biological applications.

机译:磁性纳米线的制备,功能化和操纵,用于生物学应用。

获取原文
获取原文并翻译 | 示例

摘要

Multi-segment, high aspect-ratio nanoparticles, or nanowires, have been fabricated by templated electrodeposition and selectively functionalized for biological applications. This selectivity was accomplished by utilizing the fact that organic molecules with appropriate ligands selectively bind to discrete segments of multisegment metal and metal oxide nanowires. As a result, multi-component nanowires with different functionalities on each segment can be attained. Two-component Ni-Au nanowires were functionalized to yield both a hydrophilic segment and a hydrophobic segment. This allowed for preferential protein adsorption on the nickel or gold segment of the nanowire. The protein resistant properties of these bifunctional nanowires were studied and quantified by optical and fluorescence microscopies.; Nanowires were introduced to mammalian cells to investigate cell-nanowire interactions; specifically self-assembly and cell separations. The deposition of nickel or ferric oxide segments enables magnetic manipulation of the nanowires with an applied magnetic field. Cell separations were performed by utilizing both the inherent magnetic properties of ferromagnetic nanowires and the ability to chemically modify nanowire surfaces. Single- and multi-segment magnetic nanowires provide an excellent platform for cell manipulations because their large magnetic moments allow for the application of large forces to cells. Cell separations based on the magnetic properties of nanowires show increased effectiveness compared to magnetic beads.; Additionally, cell separations taking advantage of surface functionalization techniques enabled the binding of a cell specific antibody to nanowires. For example, nickel nanowires have been functionalized with mouse anti-human E-cadherin antibody, which shows selectivity toward epithelial cells. Magnetic separation revealed an enhancement in the population of this cell type from a heterotypic culture.; Lastly, magnetic nanowires and cells bound to nanowires will align head-to-tail in an applied magnetic field. The dynamics of nanowire "chain" formation were studied by video microscopy and quantatively modeled. This demonstrates a new approach for selfassembly and the ability to manipulate cells for biological applications.
机译:多模板,高长宽比的纳米粒子或纳米线已通过模板电沉积和选择性功能化的生物学应用程序进行了制造。通过利用具有适当配体的有机分子选择性地结合至多段金属和金属氧化物纳米线的离散段这一事实来实现这种选择性。结果,可以获得在每个片段上具有不同功能的多组分纳米线。将两组分的Ni-Au纳米线官能化以产生亲水链段和疏水链段。这允许优先的蛋白质吸附在纳米线的镍或金片段上。研究了这些双功能纳米线的蛋白抗性,并通过光学和荧光显微镜对其进行了定量。将纳米线引入哺乳动物细胞以研究细胞-纳米线的相互作用。特别是自组装和细胞分离。镍或三氧化二铁链段的沉积能够在施加磁场的情况下对纳米线进行磁性处理。通过利用铁磁纳米线的固有磁性和化学修饰纳米线表面的能力来进行细胞分离。单段和多段磁性纳米线为细胞操作提供了一个极好的平台,因为它们的大磁矩允许对细胞施加较大的力。与磁性珠相比,基于纳米线的磁性的细胞分离显示出更高的有效性。另外,利用表面功能化技术的细胞分离能够使细胞特异性抗体与纳米线结合。例如,镍纳米线已被小鼠抗人E-cadherin抗体功能化,该抗体对上皮细胞具有选择性。磁分离显示来自异型培养的这种细胞类型的种群增加。最后,磁性纳米线和绑定到纳米线的细胞将在施加的磁场中从头到尾对齐。通过视频显微镜研究了纳米线“链”形成的动力学并进行了定量建模。这证明了一种用于自我组装的新方法以及为生物学应用操纵细胞的能力。

著录项

  • 作者

    Fond, Amanda M.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Chemistry Inorganic.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无机化学;
  • 关键词

  • 入库时间 2022-08-17 11:38:35

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号