首页> 外文学位 >Flowfield characterization and model development in detonation tubes.
【24h】

Flowfield characterization and model development in detonation tubes.

机译:爆管中的流场表征和模型开发。

获取原文
获取原文并翻译 | 示例

摘要

A series of experiments and numerical simulations are performed to advance the understanding of flowfield phenomena and impulse generation in detonation tubes. Experiments employing laser-based velocimetry, high-speed schlieren imaging and pressure measurements are used to construct a dataset against which numerical models can be validated. The numerical modeling culminates in the development of a two-dimensional, multi-species, finite-rate-chemistry, parallel, Navier-Stokes solver. The resulting model is specifically designed to assess unsteady, compressible, reacting flowfields, and its utility for studying multidimensional detonation structure is demonstrated. A reduced, quasi-one-dimensional model with source terms accounting for wall losses is also developed for rapid parametric assessment. Using these experimental and numerical tools, two primary objectives are pursued. The first objective is to gain an understanding of how nozzles affect unsteady, detonation flowfields and how they can be designed to maximize impulse in a detonation based propulsion system called a pulse detonation engine. It is shown that unlike conventional, steady-flow propulsion systems where converging-diverging nozzles generate optimal performance, unsteady detonation tube performance during a single-cycle is maximized using purely diverging nozzles. The second objective is to identify the primary underlying mechanisms that cause velocity and pressure measurements to deviate from idealized theory. An investigation of the influence of non-ideal losses including wall heat transfer, friction and condensation leads to the development of improved models that reconcile long-standing discrepancies between predicted and measured detonation tube performance. It is demonstrated for the first time that wall condensation of water vapor in the combustion products can cause significant deviations from ideal theory.
机译:进行了一系列实验和数值模拟,以增进对爆管中流场现象和脉冲产生的理解。利用基于激光的测速仪,高速schlieren成像和压力测量的实验可构建可验证数值模型的数据集。数值建模最终导致了二维,多物种,有限速率化学,并行,Navier-Stokes求解器的开发。生成的模型专门设计用于评估不稳定,可压缩的反应流场,并证明了其在研究多维爆轰结构中的实用性。还开发了一种简化的准一维模型,其源项考虑了壁面损失,用于快速参数评估。使用这些实验和数值工具,追求两个主要目标。第一个目标是要了解喷嘴如何影响不稳定的爆震流场,以及如何设计喷嘴以最大化基于爆震的推进系统(称为脉冲爆震发动机)中的脉冲。结果表明,与传统的稳流推进系统不同,在传统的稳流推进系统中,会聚-发散喷嘴可产生最佳性能,而使用纯发散喷嘴可最大程度地提高单周期内的不稳定导爆管性能。第二个目标是确定导致速度和压力测量偏离理想理论的主要潜在机制。对包括壁传热,摩擦和凝结在内的非理想损失的影响的研究导致了改进模型的发展,该模型可以协调预测和测量的爆轰管性能之间的长期差异。首次证明燃烧产物中水蒸气的壁冷凝会导致与理想理论的重大偏离。

著录项

  • 作者

    Owens, Zachary Clark.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

  • 入库时间 2022-08-17 11:38:35

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号