首页> 外文学位 >Transcriptional control of axon growth ability.
【24h】

Transcriptional control of axon growth ability.

机译:轴突生长能力的转录控制。

获取原文
获取原文并翻译 | 示例

摘要

Why do central nervous system (CNS) neurons fail to regenerate after injury? For example, retinal ganglion cells (RGCs, a type of CNS neuron) fail to regenerate their axons after optic nerve injury. Overcoming the glial-associated inhibitory environment is not sufficient on its own, suggesting that intrinsic changes within the neurons themselves also contribute. Indeed RGCs lose their intrinsic capacity for rapid axon growth during development. To determine the molecular mechanism for this loss, over 100 developmentally regulated genes were screened in primary neurons for effects on neurite growth. Overexpression of the transcription factor Kruppel-like factor 4 (KLF4) resulted in an approximately 50% decrease in neurite growth. KLF4 overexpression in RGCs results in decreased acquisition of neuronal polarity, neurite growth and neurite initiation in vitro. Furthermore, RGCs lacking KLF4 grow their axons faster in vitro, and demonstrate increased axon regenerative capacity after optic nerve injury in vivo. Further analysis of the KLF family revealed that 15 members are expressed in RGCs, and their overexpression results in differential effects on neurite growth in multiple primary neurons. Many are developmentally regulated in a manner that correlates with their ability to affect neurite growth, such that growth enhancers display decreased expression postnatally, while growth suppressors have increased expression postnatally. RGCs express many neurite growth-suppressing KLFs, and when these are paired with KLF neurite growth enhancers, the suppressive neurite growth phenotype dominates. These data suggest that to further enhance regeneration after injury, we may need to block the function of many growth suppressing KLF family members. Taken together, these results suggest that KLFs play an important role in the intrinsic regulation of axon growth and regeneration and that by manipulating their expression, we may further increase the intrinsic capacity of neurons to grow and regenerate.
机译:为什么中枢神经系统(CNS)神经元在受伤后无法再生?例如,视神经损伤后,视网膜神经节细胞(RGCs,一种CNS神经元)无法再生其轴突。克服神经胶质细胞相关的抑制环境本身是不够的,这表明神经元自身内部的内在变化也起作用。实际上,RGC在开发过程中丧失了其轴突快速生长的内在能力。为了确定这种损失的分子机制,在初级神经元中筛选了100多个发育受调控的基因,以研究其对神经突生长的影响。转录因子Kruppel样因子4(KLF4)的过表达导致神经突生长减少大约50%。 RGC中KLF4的过表达导致体外神经元极性的获得,神经突生长和神经突起始减少。此外,缺乏KLF4的RGC在体外会更快地生长其轴突,并在体内视神经损伤后显示出增强的轴突再生能力。对KLF家族的进一步分析显示,在RGC中表达了15个成员,它们的过表达导致对多个原代神经元神经突生长的不同影响。许多以与它们影响神经突生长的能力相关的方式受到发育调节,使得生长增强剂在出生后表现出降低的表达,而生长抑制剂在出生后表现出增加的表达。 RGC表达许多抑制神经突生长的KLF,当将它们与KLF神经突生长增强剂配对时,抑制性神经突生长表型占主导。这些数据表明,要进一步增强损伤后的再生,我们可能需要阻断许多抑制生长的KLF家族成员的功能。综上,这些结果表明,KLF在轴突生长和再生的内在调节中起着重要作用,并且通过操纵它们的表达,我们可以进一步增加神经元生长和再生的内在能力。

著录项

  • 作者

    Moore, Darcie L.;

  • 作者单位

    University of Miami.;

  • 授予单位 University of Miami.;
  • 学科 Biology Neuroscience.Biology Cell.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:50

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号